Если значения частных производных в точках области решения малы, то радикальным способом увеличения точности аппроксимации уравнения является уменьшение шага сетки.
При задании в правой части уравнения Лапласа функции g(x,y) последняя в приведенных конечно-разностных суммах должна заменить
на , – на и т.д.:7. Сеточные методы для нестационарных задач
Уменьшение величины шага приводит к квадратичному возрастанию числа точек в области решения, а следовательно, к порядку алгебраической системы уравнений. Одним из путей уменьшения числа уравнений является метод прямых, который позволяет аппроксимировать дифференциальное уравнение в частных производных системой дифференциальных уравнений в обыкновенных производных с краевыми условиями. Для этого частные производные по одной из независимых переменных не заменяют конечно-разностным эквивалентом. Если в уравнении оставлена пространственная переменная, то получаемая система будет краевой задачей со всеми сложностями ее решения, рассмотренными ранее.
Существенным будет выигрыш лишь при решении дифференциальных уравнений в частных производных, описывающих нестационарные процессы. К ним относятся уравнения, подобные уравнениям теплопроводности и волновому. Этим уравнениям кроме условий на границе задают еще и начальное распределение искомой функции во всех точках области решения.
Применение метода прямых рассмотрим на примере решения уравнения теплопроводности следующего вида:
,которое описывает распространение тепла (изменение температуры) вдоль металлического стержня, вваренного своими концами в две металлические пластины с разными, постоянно поддерживаемыми на них температурами. Коэффициент B, характеризующий свойства материала, возьмем равным 1.
Пусть расстояние между пластинами равно единице, т.е. , значения температуры на пластинах
и начальное распределение температуры по длине .Разобьем единичную длину стержня на 8 равных частей (h=1/8)и обозначим значение температуры в каждой точке через
, k=0,1,..., Применим пяти- и шести точечную аппроксимацию частной производной второго порядка: первую симметричную - для внутренних точек, и вторую (несимметричную) – для приграничных точек . Температуры в точках с k=0и k=8 заданы: 100° и 0°.После замены производных конечно-разностными эквивалентами получим следующую систему линейных дифференциальных уравнений с начальными условиями
в векторно-матричной форме:Чтобы получить представление о влиянии порядка разностных формул на вид записи и точность решения задачи, в таблице приведены системы уравнений для 5- и 3-точечных выражений частных производных:
Произ-водная | |||
T1’= | -15T1-4T2+14T3-6T4+T5+1000 | -20T1+6T2+4T3-T4+1100 | -2T1+T2+100 |
T2’= | 16T1-30T2+16T3-T4-100 | 16T1-30T2+16T3-T4-100 | T1-2T2+T3 |
T3’= | -T1+16T2-30T3+16T4-T5 | -T1+16T2-30T3+16T4-T5 | T2-2T3+T4 |
T4’= | -T2+16T3-30T4+16T5-T6 | -T2+16T3-30T4+16T5-T6 | T3-2T4+T5 |
T5’= | -T3+16T4-30T5+16T6-T7 | -T3+16T4-30T5+16T6-T7 | T4-2T5+T6 |
T6’= | -T4+16T5-30T6+16T7 | -T4+16T5-30T6+16T7 | T5-2T6+T7 |
T7’= | T3-6T4+14T5-4T6-15T7 | -T4+4T5+6T6-20T7 | T6-2T7 |
Полученные системы обыкновенных дифференциальных уравнений можно решать любым из рассмотренных ранее численным методом. Правда, появляется особенность в выборе шага интегрирования по времени, который теперь зависит еще и от шага разбиения области решения по пространственной переменной. В случае аппроксимации производной по времени конечными разностями “вперед” соотношение между шагом по временной переменной
и по пространственной должно подчиняться следующему неравенству: . При несоблюдении неравенства решение будет численно неустойчивым и интегрирование по времени с каждым шагом будет давать неограниченно возрастающие значения.В рассматриваемом примере
= 0,015625, поэтому интегрирование трех систем по формулам Рунге-Кутта было выполнено с шагом по времени = 0,001 до значения 0,01 и с шагом 0,005 – до значения времени, равного 0,75. Выборка ряда значений температуры из решений в интервале времени (0,0.75] показана в таблице колонками из трех чисел, соответствующих сверху-вниз трем приведенным выше системам.0.01 | 36.3236.8223.97 | 1524663.434 | 0.95731.0380.3456 | -0.0055790.0045830.02668 | -0.02021-0.020090.001666 | -0.001651-0.00284073610^(-5) | 0.009336-0.00019313.93410^(-6) |
0.02 | 52.5252.3937.89 | 20.8621.009.682 | 6.1656.2871.825 | 1.2981.3470.2702 | 0.17150.18100.0328 | 0.016560.0025150.003367 | 0.03366-0.015590.0002973 |
0.05 | 69.369.1757.27 | 42.8842.7926.61 | 23.5223.5010.15 | 11.3711.373.243 | 4.8214.8260.884 | 1.7731.7670.2089 | 0.52020.51420.04223 |
0.1 | 77.9977.9869.09 | 57.6157.5842.81 | 40.1440.1223.71 | 26.2726.2511.75 | 1615.995.222 | 8268292.076 | 3.8423.8540.6867 |
0.25 | 85.4385.4380.18 | 71.1871.1861.57 | 57.5157.5145.12 | 44.644.6031.4 | 32.5132.5120.52 | 21.1821.1812.13 | 10.4310.435.581 |
0.5 | 87.3287.3285.39 | 74.6774.6771.1 | 62.0762.0757.41 | 49.5449.5444.5 | 37.0737.0732.42 | 24.6724.6721.11 | 12.3212.3210.39 |
0.75 | 87.4887.4886.87 | 74.9774.9773.84 | 62.4662.4660.99 | 49.9649.96437 | 37.4637.4635.99 | 24.9724.9723.84 | 12.4812.4811.87 |
Как видно, трех точечная аппроксимация по сравнению с пятиточечной дает худший результат. Точное решение в установившемся режиме дает изменение температуры на каждой одной восьмой длины стержня 12,5°С. Пятиточечная аппроксимация в данной задаче дала погрешность в сотые доли процента.
Литература
1. Калашников В. И. Введение в численные методы: Учеб. пособие. – Харьков: НТУ “ХПИ”, 2002. – 132 с.
2. Рено Н.Н. АЛГОРИТМЫ ЧИСЛЕННЫХ МЕТОДОВ: МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ ВУЗОВ. Изд-во: "Книжный дом Университет" (КДУ), 2007. – 24с.
3. Самарcкий А. А. Задачи и упражнения по численным методам. Изд.3 Изд-во: КомКнига, ЛКИ, 2006. – 208с.
4. Самарский А.А. Введение в численные методы Учебное пособие для вузов 3-е изд.,стер. ЛАНЬ, 2005. – 288с.
5. Турчак Л. И., Плотников П. В. Основы численных методов. Изд-во: ФИЗМАТЛИТ®, 2003. – 304с.
6. Тыртышников Е.Е. МЕТОДЫ ЧИСЛЕННОГО АНАЛИЗА (1-Е ИЗД.) УЧЕБ. ПОСОБИЕ Издательство "Академия/Academia", 2007. – 320с.