Гипотеза Биля формулируется следующим образом: неопределенное уравнение:
Аx +Вy= Сz/1/
не имеет решения в целых положительных числах А, В, С, x, y и z при условии, что x, y и z больше 2.
Суть гипотезы Биля не изменится, если уравнение /1/ запишем следующим образом:
Аx = Сz - Вy/2/
Уравнение /2/ рассматриваем как параметрическое уравнение с параметром Aи переменными Bи С.
Уравнение /2/ запишем в следующем виде:
Аx= (С0,5z) 2 - (В0,5y) 2 /3/
Обозначим:
В0,5y=V/4/
С0,5z=U/5/
Отсюда:
Вy=V2 /6/
Сz=U2 /7/
В =
/8/С =
/9/Тогда из уравнений /2/, /6/ и /7/ следует:
Аx= Сz-Вy =U2-V2 /10/
Уравнение /10/ в соответствии с известной зависимостью для разности квадратов двух чисел запишем в виде:
Аx= (U-V) ∙ (U+V) /11/
Для доказательства гипотезы Биля используем метод замены переменных. Обозначим:
U-V=X/12/
Из уравнения /12/ имеем:
U=V+X/13/
Из уравнений /11/, /12/ и /13/ имеем:
Аx= X· (V+X+V) =X (2V+X) =2VХ+X2 /14/
Из уравнения /14/ имеем:
Аx - X2=2VХ/15/
Отсюда:
V=
/16/Из уравнений /13/ и /16/ имеем:
U=
/17/Из уравнений /8/, /9/, /16/ и /17/ имеем:
B=
/18/C =
/19/Из уравнений / 18/ и /19/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа А на число X, т.е. число Xдолжно быть одним из множителей, входящих в состав множителей числа А. Другими словами, число А должно быть равно:
A = N∙ X, /20/
где N - простое или составное целое положительное число.
Из уравнений / 18/ и /19/ следует, что необходимым условием для того чтобы числа В и С были целыми, является также одинаковая четность чисел Aи X: оба числа должны быть четными или оба нечетными.
Из уравнений / 18/, /19/ и /20/ следует:
В=
/21/C=
/22/Обозначим:
P =
/23/Q =
/24/Тогда:
B =
/25/С =
/26/Из уравнений /23/ и /24/ имеем:
Q =
/27/Таким образом, из уравнений /26/ и /27/ следует:
С =
/28/Из анализа уравнений /25/ и /28/ следует, что поскольку разность между числами Pи Qравна всего лишь:
Q- P = P + 1 - P = 1, /29/
то по меньшей мере одно из чисел В или С является дробным числом.
Допустим, что число В - целое число.
ПРИМЕРЫ: X=33 = 27; P = 53 =125; y=6.
По формуле /25/ имеем:
B =
= .Тогда:
при z=6: С =
= - дробное число.при z=5: С =
= - дробное число.при z=4: С =
= - дробное число.при z=3: С =
= - дробное число.при z=7: С =
= - дробное число.Очевидно, что если (am)2 = a2m, то (am + 1)2 ≠ b2m,
где: a- целое число;
b- целое число.
Таким образом, одно из чисел В или С - дробное число. Следовательно, гипотеза Биля не имеет решения в целых положительных числах.