Смекни!
smekni.com

Критерій Байєса-Лапласа при експоненційно розподілених даних для множини оптимальних рішень (стр. 1 из 3)

КУРСОВА РОБОТА

на тему:

«Критерій Байєса-Лапласа при експоненційно розподілених даних для множини оптимальних рішень»


Зміст

Вступ. 3

Розділ 1. Аналіз літературних і електронних джерел. 5

1.1 Постановка задачі 5

1.2 Критерії прийняття рішень. 5

1.3 Критерій Баєса-Лапласа. 6

Розділ 2. Математичний опис. 8

Розділ 3. Розробка програми. 11

3.1 Вибір програмного середовища. 11

3.2 Розробка інтерфейсу. 13

3.3 Розробка програмного коду. 15

Висновки. 24

Список літератури. 25


Вступ

Прийняття рішень є найважливішим компонентом систем управління проектами (УП), коли необхідно вирішувати задачі планування, проектування, виробництва, розподілу і регулювання ресурсів (трудових, матеріальних, устаткування) з урахуванням всіх обмежень (технічних, бюджетних, тимчасових). Керівники проектів рідко добиваються успіхів, якщо не володіють або не використовують методи ухвалення обґрунтованих рішень. Прийняття рішень – найвідповідальніша і інтелектуальна сфера діяльності людини і, в першу чергу, керівника будь-якого рангу.

Задачі вибору якнайкращих варіантів при проектуванні систем в умовах обмеженого фінансування є однією з найтиповіших для використовування методів прийняття рішень.

Задачі проектування, що зустрічаються на практиці, які вимагають застосування методів прийняття рішень, виключно різноманітні. Більшість задач зв’язані з вибором одного або декількох альтернативних варіантів з урахуванням можливих ситуацій, для їх вирішення рідко застосовуються методи математичного програмування унаслідок відсутності або невірогідності початкових даних. [1]

Існують різні ознаки класифікації задач прийняття рішень. По ступеню або умовам, в яких ухвалюються рішення, розрізняють наступні види задач.

1. Прийняття рішень в умовах повної невизначеності, коли роль початкових даних виконують інтуїція і досвід експертів.

2. Прийняття рішень в умовах невизначеності, в даному випадку відомі окремі характеристики альтернативних варіантів в різних ситуаціях, але відомості про ймовірність ситуацій відсутні. При цьому зміна ситуацій може носити нейтральний характер (гра з природою) або протидіючий конфліктний характер.

3. Прийняття рішень в умовах часткової невизначеності або ризику, коли відома ймовірність можливих ситуацій для реалізації варіантів.

4. Прийняття рішень в умовах визначеності, в даному випадку вся необхідна інформація точно відома.

Більшість реальних інженерних задач містить в тому або іншому вигляді невизначеність. Можна навіть стверджувати, що рішення задач з урахуванням різного виду невизначеностей є загальним випадком, а прийняття рішень без їх урахування - приватним. Проте, через концептуальні і методичні труднощі в даний час не існує єдиного методологічного підходу до рішення таких задач. Проте, накопичене достатньо велике число методів формалізації постановки і прийняття рішень з урахуванням невизначеностей. При використанні цих методів слід мати на увазі, що всі вони носять рекомендаційний характер, і вибір остаточного рішення завжди залишається за людиною (ЛПР).

Невизначені чинники, закон розподілу яких невідомий, є найхарактернішими при дослідженні якості адаптивних систем. Саме на цей випадок слід орієнтуватися при виборі гнучких конструкторських рішень. Методичний облік таких чинників базується на формуванні спеціальних критеріїв, на основі яких ухвалюються рішення. Критерії Вальда, Севіджа, Гурвіца і Лапласа вже давно і міцно увійшли до теорії прийняття рішень.

Критерій Байєса – Лапласа враховує кожне з можливих наслідків всіх варіантів рішень.

Критерій Байєса – Лапласа пред'являє до ситуації, в якій ухвалюється рішення, наступні вимоги:

ймовірність появи стану Vj відома і не залежить від часу;

ухвалене рішення теоретично допускає нескінченно велике

кількість реалізацій;

допускається деякий ризик при малих числах реалізацій. [2]

Розберемось детальніше з БЛ критерієм в даній курсовій роботі.


Розділ 1. Аналіз літературних і електронних джерел

1.1 Постановка задачі

Розробити програмний продукт для формування множини оптимальних рішень за критерієм Байєса – Лапласа. Матрицю рішень сформувати за експоненціальним законом розподілу. Дослідження працездатності схеми, за якою формується множина оптимальних рішень.

1.2 Критерії прийняття рішень

Критерій прийняття рішень - це функція, що виражає переваги особи, що ухвалює рішення (ЛПР), і, що визначає правило, по якому вибирається прийнятний або оптимальний варіант рішення.

Всяке рішення в умовах неповної інформації приймається з урахуванням кількісних характеристик ситуацій, в якій ухвалюються рішення. Найчастіше приймаються наступні критерії прийняття Севіджа, критерій Гурвіца, критерій Ходжа-Лімона, критерій Гермейєра, відповідності з рішень: мінімаксний критерій, критерій Байєса – Лапласа, критерій якою-небудь оцінною інформацією, вибір якої повинен здійснюватися критерій добутків («произведений»), складовий критерій Байєса – Лапласа мінімаксний.

Ці критерії можна використовувати по черзі, причому після обчислення їх значень серед декількох варіантів доводиться довільним чином виділяти деяке остаточне рішення. Що дозволяє, по-перше, краще проникнути у всі внутрішні зв'язки проблеми прийняття рішення і, по-друге, ослабити вплив суб'єктивного чинника. [2]

Класичні критерії прийняття рішень.

1) Мінімаксний критерій

2) Критерій Севіджа

З) Критерій Байєса – Лапласа

4) Розширений мінімаксний критерій

5) Критерій добутків

6) Критерій Гермейєра

7) Критерій Гурвіца

8) Складовий критерій Байєса – Лапласа мінімаксний

1.3 Критерій Баєса-Лапласа

Один із відомих класичних критеріїв прийняття рішень являється Критерій Байєса – Лапласа. Критерій Байєса – Лапласа враховує кожне з можливих наслідків всіх варіантів рішень:

Відповідне правило вибору можна інтерпретувати таким чином: матриця рішень [Wіj] доповнюється ще одним стовпцем, що містить математичне очікування значень кожного з рядків. Вибирається той варіант, в рядках якого коштує найбільше значення Wіj цього стовпця.

Критерій Байєса – Лапласа пред'являє до ситуації, в якій ухвалюється рішення, наступні вимоги:

ймовірність появи стану Vj відома і не залежить від часу;

ухвалене рішення теоретично допускає нескінченно велике

кількість реалізацій;

допускається деякий ризик при малих числах реалізацій.

Критерій Байєса – Лапласа може бути застосовуватись тільки в тому випадку, коли відомі ймовірності реалізації умов. [З]

Також зазначу пару слів про експоненційний метод розподілу, за яким формуємо матрицю рішень згідно завдання.

Вектори використовуються для опису функціонування систем, в яких перевищена кількість подій відбувається за відносно короткий проміжок часу, а окремі події для своєї реалізації потребують значно довших часових відтінків, наприклад час обслуговування клієнтів у банку, надходження автомобілів на заправну станцію, термін придатності електронних складових побутових пристроїв та ін.

Коли ймовірність появи події в малому інтервалі часу дуже мала і не залежить від появи інших подій, то інтервали часу між послідовними подіями розподіляються за експоненціальним законом.

Експоненціальний розподіл:

Рисунок 1 – Графік експоненціального закону розподілу

Цьому закону розподілу підлягає багато явищ, наприклад тривалість телефонних розмов, строк служби електронних деталей, час прибуття літака в аеропорт та ін. [4]


Розділ 2. Математичний опис

Приклад №1:

Розглянемо задачу ПР із 6 альтернативами із 8 можливими станами.

Задано матриці U(х,s) – станів і р(х,s) – ймовірностей, значення яких подані в таблиці 1 і таблиці 2 відповідно:

Таблиця 1 – Значення матриці U(х,s)

s1 s2 s4 s5 s6 s7 s8
х1 1 2 -2 0 4 6 7 -4
х2 0 0 -1 0 5 6 1 2
хЗ 4 1 1 2 1 0 2 З
х4 -6 7 5 5 2 2 0 З
Х5 -1 -1 0 4 2 З 4 5
х6 -2 -1 -2 2 1 0 З 4

Таблиця 2 – Значення матриці р(х,s)

s1 s2 s4 s5 s6 s7 s8
х1 0 0 0 0.5 0 0.5 0 0
х2 0 0 0 0 0.2 0 0 0.8
хЗ 0.1 0.2 0 0 0 0 0 0.7
х4 0 0 0 1 0 0 0 0
Х5 1 0 0 0 0 0 0 0
х6 0 0.4 0 0 0.6 0 0 0

Тоді за методом Байєса – Лапласа – хопт є

шукаємо множину оптимальних рішень: