Новосибирский государственный педагогический университет.
Математический факультет.
Кафедра геометрии и МПМ.
Логические задачи и методы их решения
Курсовая работа по математике.
Выполнила: студентка 35гр. Голобокова О.В.
Новосибирск 2009 г.
СОДЕРЖАНИЕ
Введение
1. Типы и способы решения логических задач
1.1 Задачи типа «Кто есть кто?»
1.2 Тактические задачи
1.3 Задачи на нахождение пересечения множеств или их объединения
1.4 Буквенные ребусы и примеры со звездочками
1.5 Истинностные задачи
1.6 Задачи типа «Шляпы»
1.7 Задачи типа «Два города»
Заключение
Список литературы
ВВЕДЕНИЕ
Тема моей курсовой работы: «Логические задачи и методы их решения».
Для расширения основного курса желательно выбирать темы, срособствующие развитию общеучебных умений школьников, обладающие значительным развивающим потенциалом. Привлекательными занятия по выбору сделает система методов организации внеурочной учебной деятельности школьника, использование групповых и индивидуальных занятий.
Содержательная и интересно поставленная внеурочная работа по математике позволяет выявить математически одаренных школьников, развить культуру мышления учащихся, разумно организовать их время.
Развитию творческой активности, инициативы, любознательности, смекалки способствует решение нестандартных задач.
У любого нормального ребенка есть стремление к познанию, желание проверить себя. Чаще всего способности школьников так иостаются не раскрыты для них самих, они не уверены в своих силах, равнодушны к математике.
Задачи повышенной трудности, в решении которых следует опираться на твердое знание изученных на уроках математических фактов, не следует сразу предлагать этим учащимся. Задачи должны быть доступны, будить сообразительность, овладевать их вниманием, удивлять, пробуждать их к активной фантазии и самостоятельному решению.
Несмотря на то, что школьный курс математики содержит большое количество интересных задач, многие полезные задачи не рассматриваются.
К эти задачам можно отнести логические задачи. Эти задачи могут быть рассмотрены на кружковых и факультативных занятиях, начиная с 5 класса.
1. Типы и способы решения логических задач
1.1 Задачи типа «Кто есть кто?»
Задачи типа «Кто есть кто?» очень разнообразны по сложности, содержанию и способности решения. Они, несомненно, представляют интерес для математического кружка.
а) Метод графов
Один из способов решения – решение с помощью графов. Граф – это несколько точек, часть которых соеденены друг с другом отрезками или стрелками (в таком случае граф называется ориентированным). Пусть нам требуется установить соответствие между двумя типами объектов (множествами). Точками обозначаются элементы множеств, а соответствие между ними – отрезками. Штриховой отрезок будет объеденять два элемента, не соответствующих друг другу.
Задача 1. Леня, Женя и Миша имеют фамилию Орлов, Соколов и Ястребов. Какую фамилию имеет каждый мальчик, если Женя, Миша и Соколов – члены математического кружка, а Миша и Ястребов занимаются музыкой?
Решение. Решить задачу просто, если учесть, что:
1. Каждому элементу одного множества обязательно соответствует элемент другого множества,но только один (у каждого мальчика есть фамилия и фамилии у мальчиков разные).
2. Если элемент каждого множества соединен со всеми элементами (кроме одного) другого множества штриховыми отрезками, то с последним он соединен сплошным отрезком.
Вместо сплошных штриховых отрезков можно использовать цветные, в таком случае решение получается более красочным, больше нравится младшим школьникам (рис. 1.).
Женя МишаЛеня
ЯстребовСоколовОрлов
Рис. 1.
Таким же способом можно находить соответствие между тремя множествами.
Задача 2. Три товарища, Иван, Дмитрий и Степан преподают различные предметы в школах Москвы, Санкт-Петербурга и Киева. Известно, что Иван работает не в Москве, а Дмитрий – не в Санкт-Петербурге; москвич преподает химию. Дмитрий не биолог. Какой предмет, и в каком городе преподает каждый товарищ?
Решение. Сначала все условия наносятся на схему. Решение же сводится к нахождению трех сплошных треугольников с вершинами в разных множествах (рис.2.).
Иван Дмитрий Степан
Москва
Химия
Санкт-Петербург
Биология
Физика Киев
Рис. 2.
При решении мы можем получить треугольники трех видов:
а) все стороны являются сплошными отрезками (решение зедачи);
б) одна сторона – сплошной отрезок, а другие – штриховые;
в) все стороны – штриховые отрезки.
Таким образом, нельзя получить треугольник, у которого бы две стороны были сплошными отрезками, а третья – штриховой отрезок. Это легко доказать на примере данной задачи.
Рассмотрим треугольник: химия – Дмитрий – Санкт-Петербург. Если предположим, что третья сторона – сплошной отрезок, то получаем следующие высказывания
-«Дмитрий преподает химию»;
-«Тот, кто преподает химию, живет в Санкт-Петпрбурге»;
-«Дмитрий не живёт в Санкт-Петербурге»;
Но из второго и третьего высказывания следует, что Дмитрий не преподает химию (отрицание первого высказывания). Значит, отрезок Дмитрий – химия штриховой, что соответствует высказыванию: «Дмитрий не преподает химию».
Задача решается автоматически: построением треугольников. От условия задачи, после внесения его на схему, можно отвлечься (рис. 3).
Иван Дмитрий Стапан
Москва
Химия
Санкт-Петербург
биология
физика Киев
рис.3.
При обучении школьников логически грамотно мыслить несомненную методическую ценность представляют задачи с неоднозначными ответами и избыточными условиями. Такие задачи чаще всего ставят учащихся в тупик. Графы, представыленные точками и отрезками, позволяют справиться с такими трудностями и выявлять структурные особенности задач.
Задача 3. Маша, Женя, Лида и Катя умеют играть на различных инструментах (виолончели, рояле, гитае и скрипке). Они же владеют различными иностранными языками (английским, французским, немецким, испанским), но каждая только одним. Известно, что девушка, которая играет на гитаре, говорит по- испански, Лида не играет ни на скрипке, ни на виолончели и не знает английского языка, так же как и Маша. Девушка, которая говорит по-немецки, не умеет играть на виолончели, Женя знает французский язык, но не умеет играть на скрипке. Кто же из девушек какой язык знает и на каком инструменте играет?
Решение. Обозначим имена: М, Ж, Л, К; музыкальные инструменты: В, Г, Р, С; иностранные языки: А, Ф, Н, И. Получаем два частичных решения задачи: К-С-А и Ж-В-Ф (рис. 4).
М Ж Л К
В А
Р Ф
Г Н
С И
Рис.4.
Далее же задача допускает два решения: М-Р-Н, Л-Г-И или М-Г-И, Л-Р-Н. Любое из этих решений не противоречит условию задачи.
б) Табличный способ
Второй способ решения логических задач – с помощью таблиц – также прост и нагляден, но его можно использовать только в том случае, когда требуется установить соответствие между двумя множествами. Он более удобен, когда множества имеют по пять-шесть элементов.
Задача 4. «Город мастеров». В нашем городе живут 5 друзей: Иванов, Петров, Сидорчук, Веселов и Гришин. У них разные профессии: маляр, мельник, парикмахер, почтальон, плотник. Но я точно знаю, что Петров и Гришин никогда не держали в руках малярной кисти, а Иванов и Гришин давно собираются посетить мельницу, где работает их товарищ. Петров и Веселов живут в одном доме с почтальоном. Иванов и Петров каждое воскресенье играют в городки с плотником и маляром, а Гришин и Веселов по субботам встречаются в парикмахерской, где работает их друг. Почтальон же предпочитает бриться дома. Помогите мне установить профессию каждого из друзей.
Решение. Решая задачу, мы заведомо знаем, что у каждого товарища одна фамилия и одна профессия (и у всех разные).
Правило 1: В каждой строке и в каждом столбце таблицы может стоять только один знак соответствия (например «+»).
Правило 2: Если в строке (или столбце) все «места», кроме одного, заняты элементарным запретом (знак несоответствия, например «-»), то на свободное место нужно поставить знак «+»; если в строке (или столбце) уже есть знак «+», то остальные места должны быть заняты знаком «-».
Начертив таблицу, нужно разместить в ней известные запреты исходя из условия задачи. Если ребята затрудняются сразу заполнить таблицу, то можно помочь им наводящими вопросами. Правила же выводятся обычно самостоятельно, интуитивно. Нужно только заострить на них внимание школьников.
Заполнив по условию задачи таблицу, сразу получем два типичных решения: Гришин – плотник, а Иванов – парикмахер (рис. 5).
Дальше ответ получается автоматически, но этот «автоматизм» можно «перевести» на язык логических рассуждений. Такой «перевод» и интересен, и помогает увидеть, откуда берется решение.
Профессия | Почтальон | Маляр | Мельник | Парикмахер | Плотник |
Фамилия | |||||
Гришин | - | - | - | - | + |
Иванов | - | - | - | + | - |
Сидорчук | - | - | |||
Петров | - | - | - | - | |
Веселов | - | - | - |
Рис.5.
После того, как произошло «сужение информации» и точно установлено, что Гришин – плотник, а Иванов – парикмахер, рассуждать можно так: т.к Иванов не почтальон (он парикмахер) и из условий задачи следует, что Гришин, Петров и Веселов не работают почтальоном, значит, Сидорчук – почтальон (а значит, не маляр и не мельник); мельником может быть только Петров, а Веселов – маляром. Эта задача предполагает только одно решение.