Смекни!
smekni.com

Марковская и полумарковская модели открытой сети с тремя узлами (стр. 5 из 8)

.

Переносим

в левую часть равенства, затем делим обе части на
и устремляем
, получим

(2.1.4)

.

Таким образом, уравнения (2.1.4) и есть искомые уравнения Колмогорова.

2.2 Поиск решения дифференциально-разностных уравнений Колмогорова

Решением уравнений Колмогорова (2.1.4) является:

(2.2.1)

.

Проверим найденное решение (2.2.1) непосредственной подстановкой в уравнения (2.1.4), получим

Таким образом, 0=0, то есть решение (2.2.1) удовлетворяет уравнениям (2.1.4).

2.3 Доказательство инвариантности стационарного распределения

Согласно 1.2, для марковской модели сети с тремя узлами получен вид стационарного распределения, который определяется по формуле (1.2.9). При этом времена обслуживания заявок имеют показательное распределение с параметрами

для
-ого узла, где
– число заявок в
-ой системе,
. В соответствии с разделом 2, для полумарковской модели сети с тремя узлами, предполагаем, что длительность обслуживания отдельного требования распределена по произвольному закону. Пусть
– функция распределения времени обслуживания
-ым прибором одной заявки. Предполагается, что выполняется условие, определяемое формулой (2.1).

Согласно результату Севастьянова [6] и формуле (2.2.1), стационарное распределение сохраняет форму произведения (инвариантно) и при допущенных допущениях.

Таким образом, доказана инвариантность стационарного распределения открытой сети массового обслуживания с тремя узлами.


3. МАРКОВСКАЯ МОДЕЛЬ СЕТИ С ТРЕМЯ УЗЛАМИ И РАЗНОТИПНЫМИ ЗАЯВКАМИ

Пусть имеется открытая сеть массового обслуживания, состоящая из трёх узлов, в которую поступают два независимых пуассоновских потока заявок с интенсивностями

и
соответственно. Моменты поступления заявки (все равно из какого потока) образуют новый поток, который называется суперпозицией или объединением первоначальных потоков.

Обозначим через

,
,
– вероятности поступления
заявок за время
соответственно для потока с интенсивностью
,
, суммарного потока. Так как заявки потоков с интенсивностями
и
поступают независимо друг от друга, то по формуле полной вероятности получим:

, (3.1)

то есть суперпозиция пуассоновских потоков с интенсивностью

. [2]

Времена обслуживания заявок в различных узлах независимы, не зависят от процесса поступления заявок и имеют показательное распределение с параметрами

для
-ого узла,
- константа (
). Схематически сеть изображена на рисунке 3.1.

Рисунок 3.1