Смекни!
smekni.com

Марковская и полумарковская модели открытой сети с тремя узлами (стр. 7 из 8)

. (3.2.5)

В соответствии с формулами (3.1.16) и (3.1.17)

. (3.2.6)

Учитывая формулу (3.2.6) и (3.2.5), получим

. (3.2.7)

Подставим формулы (3.2.5) и (3.2.6) в формулу (3.2.2), имеем

. (3.2.8)

Так как

, то формула (3.2.8) примет следующий вид

. (3.2.9)

Раскрывая скобки и приводя подобные члены, запишем формулу (3.2.9) в виде

(3.2.10)

Таким образом, полученное уравнение (3.2.10) квадратное, то есть

, (3.2.11)

где коэффициенты

, учитывая обозначения
и формулу (3.2.10), определяются следующим образом

, (3.2.12)

, (3.2.13)

. (3.2.14)

Для уравнения (3.2.11) найдём дискриминант, учитывая формулы (3.2.12), (3.2.13), (3.2.14), имеем

.

Для получения решения уравнения (3.2.11) должно выполнятся следующее условие

, а это возможно тогда, когда

.

Согласно формуле

, получим

,

то есть

. (3.2.15)

В соответствии с рисунком 3.1, формула (3.2.15) есть условие эргодичности. Если это условие не выполняется, то нет стационарного распределения.

Учитывая формулы (3.2.12), (3.2.14), (3.2.15) получим, что

,
. Согласно обратной теореме Виета, если
- корни уравнения (3.2.11), то выполняются следующие соотношения

Так как

, то один из корней положительный и один отрицательный.

Таким образом, уравнение (3.2.11) имеет одно положительное решение. То есть система уравнений трафика (3.1.12) – (3.1.17) имеет положительное решение.

3.3 Уравнения равновесия

В соответствии, с рисунком 3.1 составим уравнения равновесия

(3.3.1)

.

3.4 Определение вида стационарного распределения

Стационарное распределение представимо в форме произведения множителей характеризующих узлы; каждый множитель есть стационарное распределение узла, то есть

.

Стационарное распределение

-ого узла имеет вид

,

где

,
.

Таким образом, стационарное распределение имеет следующий вид

. (3.4.1)

Обозначим через

,
,
.

Тогда в этих обозначениях формула (3.4.1) запишется в следующем виде

. (3.4.2)

Подставляя формулу (3.4.2) в уравнения равновесия (3.3.1), получим

(3.4.3)

.

Разделим обе части уравнения (3.4.3) на

, получим

(3.4.4)

.

Через

запишем уравнения трафика (3.1.12) – (3.1.17)

, (3.4.5)

, (3.4.6)

, (3.4.7)

, (3.4.8)

, (3.4.9)

. (3.4.10)

Так как

, (
), то получим следующие соотношения

, (3.4.11)

, (3.4.12)

. (3.4.13)

Рассмотрим всевозможные случаи числа заявок в марковской модели сети с тремя узлами и разнотипными заявками. То есть следующие случаи

1)

,
,
;

2)

,
,
;

3)

,
,
;

4)

,
,
;

5)

,
,
;

6)

,
,
;