5) Находят значения функции в точках максимума и минимума, в точках перегиба и ещё в нескольких точках в зависимости от нужной точности построения графика функции.
Учитывая изученные свойства, строят график функции.
1. Бурбаки Н. Очерки по истории математики / Н. Бурбаки. - М.: Изд-во Ин. лит., 1972.
2. Гнеденко Б.В. Математика в современном мире / Б.В. Гнеденко. - Издательство Просвещение. - М.: Просвещение, 1980.
3. Кудрявцев Л.Д. Мысли о современной математике и ее изучении / Л.Д. Кудрявцев. - М.: Просвещение, 1977.
4. Локоть Н.В. Математика для нематематиков. Учебное пособие для студентов-гуманитариев / Н.В. Локоть. - Мурманск: МГПИ, 1999.
5. Математика: Большой энциклопедический словарь / Под. ред. Ю.В. Прохорова. - 3-е изд. - М.: БРС, 1998.
6. Малаховский В.С. Введение в математику / В.С. Малаховский. - Калининград: Янтарный сказ, 2001.
7. Сухотин А.К. Философия математики. Учебное пособие / А.К. Сухотин. - М., 2000.
[1] Аксиоматический метод, способ построения научной теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путем логической дедукции получать утверждения (теоремы) данной теории.
[2] Топология изучает топологические свойства фигур, т.е. свойства, не изменяющиеся при любых деформациях, производимых без разрывов и склеиваний (точнее, при взаимно однозначных и непрерывных отображениях). Примерами топологических свойств фигур являются размерность, число кривых, ограничивающих данную область, и т. д. Так, окружность, эллипс, контур квадрата имеют одни и те же топологические свойства, т. к. эти линии могут быть деформированы одна в другую описанным выше образом; в то же время кольцо и круг обладают различными топологическими свойствами: круг ограничен одним контуром, а кольцо — двумя.