Смекни!
smekni.com

Математическая модель формообразования (стр. 1 из 2)

Введение

Вторжение (часто необдуманное) человека в природу связано с непониманием законов гармонии живой природы. Формирование экологической культуры должно начинаться с постижения единства и многообразия биологических объектов. Сущность гармонии природы невозможно выявить только в биологических объектах, даже сопровождая их абстрактно-математическими построениями, – можно лишь наблюдая и осмысливая её проявления, подойти к тайнам живой природы: повторение живого объекта в себе подобном. Рассмотрение различных форм, приводящих к взаимосвязанным выводам и на их основе к модели формообразования. Поэтому цель работы: отыскание единства в многообразии, а инструмент исследования математика, позволяющая рассматривать форму как категорию пространства, а, следовательно, область приложения векторной геометрии.

1. Понятие «форма» в биологии и в векторной геометрии

Какое из чудес могло бы с большей силой поразить человеческое воображение, чем появление новой жизни? Пространство, которое только что представлялось ничем, становится яблоком, деревом, человеком. Возникновение нового существа – явление целостное. Любой научный эксперимент измерением и воображением ученого разделяет пространство (форму) и вещество (плоть), в то время как целостность – главное качество жизни. Природа скрыто управляет геометрическим подобием, и восприятие формы человеком тоже обнаруживают геометрическое подобие Геометрическое подобие нужно рассматривать как фундаментальную основу эволюции жизни и метод конструирования ею форм. Поэтому математические законы формообразования неизбежно оказываются на стыке научных дисциплин. Здесь требуется свой специальный язык, и начать нужно с определения понятия «форма». Раскрывая содержание этого понятия, можно толковать его традиционно: поверхность, очерчивающая объем живого существа или растения, но такое определение отдаляет нас от цели исследования: в нем исчезло само явление роста, оно отображает жизнь в чуждых ей категориях не как динамику, а как статику.

Поэтому, чтобы исследовать формообразование, необходимо соединить в понятии «форма» представление о росте, как о процессе энергетическом, и геометрическое его содержание, как «овладение пространством», как «развитие точки начала». Чтобы сделать акцент на геометрическую сущность явления, введем понятие «экспансия» [expansio (лат.) – расширение, распространение]. Пользуясь им, определим форму в живой природе как граничную поверхность замкнутого пространства экспансии

2. Математическая модель формообразования

2.1 Поиск метода исследования

Несколько слов о правомерности описания энергетических процессов на языке геометрии. Возможны 2 пути познания:

1) изучение объекта по физическим, химическим параметрам – погружение исследователя в безграничную сложность структурных иерархий самых различных уровней макро- и микромира, описываемых необозримым числом параметров на различных предметных языках.

2) путь геометрического абстрагирования, где предметом исследования служат только пространственные характеристики структур, хотя и необычные, но ведущие к модели формообразования. Единая математическая модель – представление об экспансии точки начала. В предлагаемой модели пространство понимается как совокупность точек, обладающих равной энергетической потенцией взаимодействия. Радиус взаимодействия отражает двойственность экспансии:

Единство аддитивности и мультипликативности справедливо для отрезков, взаимодействующих род углом π или 0 (прямая линия) и в векторной геометрии для любых углов взаимодействия (0≤α≤2π). Таким образом, «золотой» векторный треугольник строит класс замкнутых кривых – нетривиальные симметрии, отображающие биологические формы. Из триады золотого сечения можно перейти в пространство симметрий подобий следующим образом.

2.2 От золотого отрезка – к пространству симметрий подобий

2.2.1 Деление отрезка в золотом отношении

Золотое сечение – это закон пропорциональной связи целого и составляющих это целое частей. Классический пример золотого сечения – деление отрезка в среднепропорциональном отношении, когда целое так относится к большей своей части, как большая часть – к меньшей.

За кажущейся простотой операции деления в крайнем и среднем отношении скрыто множество удивительных форм выражения пропорции золотого сечения в мире живой природы. Линейный закон золотого сечения широко распространён как числоваяхарактеристика членений стеблей растений, их расположения на стволе и даже пропорций человеческого тела.

Рассмотрим один из способов деления отрезка в золотом сечении (так решали задачу деления отрезка в крайнем и среднем отношении в древнем Египте и древней Греции): делимый отрезок AD=а (рис. 1) достраивают до двойного квадрата ABCD со стороной AB=а/2. Потом из диагонали DB циркулем отсекают отрезок ВЕ=АВ=а/2. С помощью циркуля переносят отрезок FD = FE = x = 5 − a / 2. Задача решена: a: x = x: (a – x) = 1.618034…

Рис. 1

Вообще, любой способ деления отрезка в золотом сечении сводится к построению квадрата и двойного квадрата (полуквадрата). Таким образом, в математику приходят числа 2 и 5 (Диагонали квадрата и двойного квадрата). Появление диагонали BD двойного квадрата ABCD и есть появление отношения золотого сечения: сторона, а есть среднее между диагональю BD=5, увеличенной на сторону а/2, и этой же диагональю, уменьшенной на сторону а/2: 1,618…


2.2.2 А-ромб и «живой» треугольник

Изобразим на вертикали отрезок, разделённый в золотом сечении на две неравные части (рис. 2).

Большую часть ещё раз разделим в золотом сечении и так будем распространять золотую цепь до бесконечности в направлении, восходящем от большего к меньшему (аддитивность). В центрах полученных отрезков построим окружности радиусами этих отрезков. До открытия возможности, скрытой в золотом сечении и позволяющей моделировать формы, играющие ключевую роль в ритмах жизни живой природы, остаётся несколько шагов. Введение прямого угла в чертёж преобразовало линейный ряд золотого сечения в пространство симметрий подобий. Для этого отметим предел, к которому стремится убывающий вид (точка N на чертеже). Затем проведём касательные через точку N к проведённым окружностям. Соединив точки касания с центрами соответствующих окружностей, получаем треугольники с прямыми углами. Соединив точку О0 и Л1 (или П1), получим прямоугольный треугольник с аналогичным отношением сторон. В получившихся прямоугольных треугольниках отношение малого катета к большому равно отношению большого катета к гипотенузе. Такой треугольник – треугольник геометрической прогрессии получил в чертеже шесть ориентаций. Полученную фигуру будем называть асимметричным ромбом (А-ромбом); левая и правая части зеркальны, восходящая цепь золотого сечения развита окружностями, а не полуокружностями (что требуется для практического деления отрезка в золотом сечении), что позволяет выявить некоторые отражения образа данного чертежа в формах живой природы. А-ромб не имеет мерности: любой отрезок в структуре А-ромба можно принять за линейную меру длины. Тогда длина любого его элемента есть число n Ф, где n – целые числа, положительные либо отрицательные. Горизонтали, соединяющие точки пересечения окружностей, делят вертикальную ось А-ромба пополам (точка Е), а каждый её отрезок также пополам. Рис. 2 А-ромб.

Угол основания 2α в А-ромбе с точностью до пятого знака совпадает с числом 1,618…

Этот же угол определяет внутримолекулярные связи в молекуле воды: он является углом атомами водорода в молекуле воды (рис. 3).

Рис. 3

Что такое вода? Большую часть всякой живой клетки составляет вода. Клетки почти всегда окружены водной средой: это может быть пресная или морская вода, тканевый сок, плазма, внеклеточная жидкость. Биологическая информация может передаваться чистой водой, а, кроме того, вода может хранить память о биологически активных молекулах, контактировавших с ней и исчезнувших из нее вследствие многократных разбавлений. То есть, вода лежит в основе жизни по многим параметрам. Жизнь возникла в воде; ничто живое без воды не может существовать. В угле 2α заключается ассоциация с явлением роста в живой природе. Угол характерен для листьев клёна (рис. 3) и членения стеблей растений, их расположения на стволе, роста раковин «Pecten» (древнейшая форма жизни моря, восходящая к середине Силура, около 350 млн. лет) – точка О1 А-ромба соответствует началу роста раковины.

Отрезок, делённый в золоте, устанавливает связь трёх величин: двух его частей и целого, которые можно выразить как числа х2, х и 1. Но треугольник А-ромба ООNЛ1 (и все ему подобные) тоже имеет соотношение сторон х2, х и 1 (Катеты суть 1 и Ф =1,272… гипотенуза (Ф) 2 =1,618…). Значит, деление отрезка в золоте есть частный случай треугольника ООNЛ1, – если катеты расположатся на одной прямой под углом π, гипотенуза совместится с катетами и возникнет случай деления отрезка в золотом сечении. Одну из сторон такого треугольника можно принять за 1, а две другие будут описываться квадратичной зависимостью. Отсюда следует, что треугольник, сохраняя ту же закономерность, может описывать, подобно часовым стрелкам, любые углы взаимодействия катетов в пределе угла 2π, то есть описывать некоторые замкнутые пространства. Проблема соразмерности и пропорций смещается в этом случае к описанию формы. Как будет вести себя «живой» треугольник, у которого стороны суть х2, х и 1? Итак, рассмотрим «живой» треугольник (рис. 7), в котором одна сторона лежит на вертикали, являясь осью симметрии на плоскости или же осью вращения в пространстве. Одна из сторон треугольника служит линейной мерой пространства, две другие – связаны квадратичной зависимостью: одна сторона есть квадрат другой. Очевидно, сформулированная задача имеет шесть вариантов решения. Положение на вертикали может занять любая из трёх сторон треугольника: х2, х или 1. При этом две другие стороны могут меняться местами.