Тогда длина интервала группирования
2) Находим границы величины
3) Находим значение представителей
4) Для графического описания выборки по условиям задания необходимо построить гистограмму относительных частот (рис. 1) и эмпирическую функцию распределения
а) На гистограмме относительных частот высота прямоугольников выбирается равной
Составляем таблицу частот группированной выборки (табл. 2), содержащую столбцы с номерами интервала j, значениями нижней границы (начала интервала) и представителя интервала
Рис. 1. Гистограмма относительных частот
б) Эмпирическая функция распределения определяется по значениям накопленных относительных частот представителей разрядов:
Функция представляет собой кусочно-постоянную функцию, имеющие скачки в точках, соответствующих серединам интервалов группировки
Рис. 2. Эмпирическая функция распределения
5) Составленную ранее таблицу частот группированной выборки (табл. 2) дополняем таблицей расчёта числовых значений
6) После заполнения таблицы 2 рассчитываем значение числовых оценок:
7) Определяем коэффициент вариаций
8) Определяем границы доверительного интервала для математического ожидания по формулам
При заданной доверительной вероятности
9) Среднеквадратичное отклонение оценки математического ожидания случайной величины Y равно
10) По виду гистограммы выдвигаем гипотезу Н0 о подчинении случайной величины нормальному закону распределения. Для построения теоретической функции
11) Рисунок 2 с эмпирической функцией распределения дополняем теоретической функцией F(y), значения которой найдены на концах интервалов.
Рис. 3. Эмпирическая
12) Для проверки согласия выдвинутой гипотезы о о законе распределения экспериментальным данным находим вероятность
Рис. 4. Гистограмма относительных частот и теоретическая плотность вероятности
13) При количественной оценке меры близости эмпирического и теоретического законов распределения можно использовать критерии Пирсона или Колмогорова.
а) по критерию Колмогорова
Максимальное значение модуля разности между значениями эмпирической и теоретической функциями(см. рис. 2) наблюдается в точке, близкой к представителю
Вычисляем величину
где r – объём выборки из представителей интервалов
б) Для вычисления