Тогда длина интервала группирования
- число интервалов (разрядов), неформализован и зависит от объёма и степени однородности выборки. При ,2) Находим границы величины
,3) Находим значение представителей
- середина j-того интервала.4) Для графического описания выборки по условиям задания необходимо построить гистограмму относительных частот (рис. 1) и эмпирическую функцию распределения
(рис. 2)а) На гистограмме относительных частот высота прямоугольников выбирается равной
, основания прямоугольников соответствуют интервалам разбиения. Площадь j-того прямоугольника равна относительной частоте наблюдений, попавших в j-тый интервал.Составляем таблицу частот группированной выборки (табл. 2), содержащую столбцы с номерами интервала j, значениями нижней границы (начала интервала) и представителя интервала
, числами значений в j-том интервале , накопленной частоты , относительной частоты , накопленной относительной частоты . Число строк таблицы равно числу интервалов r.Рис. 1. Гистограмма относительных частот
б) Эмпирическая функция распределения определяется по значениям накопленных относительных частот представителей разрядов:
Функция представляет собой кусочно-постоянную функцию, имеющие скачки в точках, соответствующих серединам интервалов группировки
, причём при , и приРис. 2. Эмпирическая функция распределения
5) Составленную ранее таблицу частот группированной выборки (табл. 2) дополняем таблицей расчёта числовых значений
и . Она содержит результаты промежуточных вычислений по формулам6) После заполнения таблицы 2 рассчитываем значение числовых оценок:
7) Определяем коэффициент вариаций
8) Определяем границы доверительного интервала для математического ожидания по формулам
При заданной доверительной вероятности
по таблицам распределения Стьюдента , поэтому имеем9) Среднеквадратичное отклонение оценки математического ожидания случайной величины Y равно
10) По виду гистограммы выдвигаем гипотезу Н0 о подчинении случайной величины нормальному закону распределения. Для построения теоретической функции
и составляем таблицу значений (таблица 3) нормальной величины , определяем функцию Лапласа , значения функции распределения на концах отрезков и вероятность попадания в i-тый интервал по формуле11) Рисунок 2 с эмпирической функцией распределения дополняем теоретической функцией F(y), значения которой найдены на концах интервалов.
Рис. 3. Эмпирическая
, теоретическая функция распределения.12) Для проверки согласия выдвинутой гипотезы о о законе распределения экспериментальным данным находим вероятность
попадания опытных данных в j-тый интервал от до на основе полученных значений функции на границах интервалов. На построенную раньше гистограмму наносим точки с координатами и соединяем их плавными линиями (Рис. 4). Сравнивая вид гистограммы и плотность распределения, необходимо убедиться в их адекватности, близости их характеров.Рис. 4. Гистограмма относительных частот и теоретическая плотность вероятности
.13) При количественной оценке меры близости эмпирического и теоретического законов распределения можно использовать критерии Пирсона или Колмогорова.
а) по критерию Колмогорова
Максимальное значение модуля разности между значениями эмпирической и теоретической функциями(см. рис. 2) наблюдается в точке, близкой к представителю
. ТогдаВычисляем величину
где r – объём выборки из представителей интервалов
, следовательно . Так как , поэтому гипотеза о нормальном распределении по критерию Колмогорова принимается как не противоречащая опытным данным.б) Для вычисления
таблицу 3 дополняем промежуточными результатами , , . Объединяем 1,2,3 и 9,10. Тогда . Получаем, что