Декартово произведение двух множеств используют для исследования всевозможных паросочетаний. Декартово произведение нескольких множеств
представляет собой множество r-строчек, каждая из которых образуется упорядоченной композицией элементов исходных множеств, т. е. zS = (x1f, x2j, ..., xrk). Операция декартова произведения множеств не обладает переместительным свойством, т. е. X
Разбиением множествах называют такое множество множеств {Xj}, где j
1) Xj Xпри всех j
2) Xj
3) Xi Xj=0 при j
4)
Ряд прикладных задач разбиения множества конструктивных элементов высокого уровня на элементы более низкого уровня (например, задача разбиения множества микросхем блока РЭА на отдельные субблоки) сводится к операциям разбиения множеств. Конкретные решения подобных задач рассмотрены в гл. 4.
Понятие пустого множества 0 аналогично нулю в алгебре чисел. Действительно, если для любого числа а справедливо а
Введем понятие множества I, соответствующее единице в алгебре чисел. Такое множество должно обладать тем свойством, что пересечение с ним любого множества Xдает в результате это же множество X, т. е. X I = Xпо аналогии с а
Множество I, обладающее этим свойством называют универсальным или единичным множеством. В общем случае, если при некотором рассмотрении участвуют только подмножества некоторого фиксированного множества I, то это самое большое множество и является универсальным.
В конкретных приложениях в качестве универсального множества могут использоваться различные общие подмножества. Например, среди множества комплектов конструкторских документов на изготовление изделий РЭА полный комплект конструкторских документов является универсальным множеством этих документов или когда при рассмотрении множеств микросхем отдельных субблоков РЭА выделяют универсальное множество таких микросхем на всю данную радиоэлектронную аппаратуру в целом.
Универсальное множество обладает свойством, не имеющим аналога в алгебре чисел, а именно для любого множества Xсправедливо соотношение X I= I.
В объединение этих множеств должны входить как элементы множества X, так и дополняющие элементы множества I. Но, в свою очередь, все элементы множества Xвходят в универсальное множество I, поэтому и объединение X Iравно универсальному множеству I.
На основании этих рассуждений легко определить дополнение множества Xкак
С помощью операции дополнения можно в удобном виде представить разность множеств
т. е.
Многие определения теории множеств удобно записывать в виде математических выражений, содержащих некоторые логические символы. К числу таких символов относится символ следствия (импликации)
Наряду с квантором общности в теории множеств существует понятие квантора существования, обозначаемого
утверждает, что существует по крайней мере один объект х, обладающий одновременно свойствами Р(х) и Q(x), т. е. Р(х) и Q(x) пересекаются: Р(х)
В теории множеств часто пользуются понятием логической эквивалентности, обозначаемой
нужно читать: «Выполнение условий X Y и Y
X, тoже самое что X= У».
Пример 1. Доказать с помощью тождественных преобразований равенство (X У)
Z= (X
Z)
(У
Z) и показать с помощью диаграмм его коммутативные свойства.
Решение. Это равенство известно как тождество дистрибутивности операций над множествами. Чтобы убедиться в справедливости этого тождества, положим
На рис. 4, а показан набор исходных множеств X, У и Z, а на рис. 4, б, в— комбинация множеств в соответствии с выражениями