Заключительный шаг. Вычитая из элементов табл.1 соответствующие элементы табл.6, получим табл.7
Таблица 7.
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 |
x1 | 6 | 7 | 4 | |||||
x2 | -6 | 0 | 0 | 6 | ||||
x3 | -7 | 0 | 3 | 4 | ||||
x4 | -4 | 0 | 0 | 2 | 2 | |||
x5 | 0 | 0 | ||||||
x6 | -3 | 0 | 3 | |||||
x7 | 4 | 2 | 0 | 0 | 6 | |||
x8 | -6 | -2 | 0 | 0 | 8 | |||
x9 | -3 | -6 | -8 |
Величина максимального потока равна сумме элементов x1-й строки табл.7 или сумме элементов x9-го столбца.
Максимальный поток равен
.Сеть Петри задана графически (рис.23…30). В табл.1 в соответствии с вариантом и указанным номером рисунка приведены различные начальные маркировки сети.
Выполнить следующие действия:
Описать сеть аналитическим и матричным способами.
Проверить условия срабатывания каждого из переходов и найти новые маркировки, к которым приведет срабатывание соответствующих переходов, путем выполнения матричных преобразований.
Построить дерево достижимости заданной сети.
Проверить, является ли достижимой одна из маркировок, получаемых на четвертом шаге построения дерева, составив и решив матричные уравнения.
Таблица 1
№варианта | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
m1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 0 | 1 | 3 | 0 | 1 | 1 |
m2 | 1 | 2 | 2 | 2 | 3 | 1 | 2 | 2 | 1 | 2 | 3 | 1 | 1 | 2 | 0 |
m3 | 2 | 3 | 1 | 0 | 1 | 1 | 1 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 3 |
m4 | 3 | 1 | 3 | 4 | 0 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 1 | 1 | 2 |
m5 | 1 | 2 | 5 | 1 | 2 | 2 | 3 | 0 | 3 | 3 | 2 | 0 | 3 | 2 | 1 |
№ рисунка | Рис.23 | Рис.27 | Рис.28 | Рис.29 |
Решение:
Опишем сеть аналитическим и матричным способами. Приведем графическое представление сети Петри, в которой позиции P = {p1, p2, p3, p4, p5} и переходы T = {t1, t2, t3 , t4 }.
Начальная маркировка сети обозначается вектором μ0 [μ1,μ2,μ3,μ4,μ5], μ0[1 3 0 1 2]. Отсюда получим:
При аналитическом способе задания сеть Петри задается как C = (P,T,F,H,μ0), где, кроме множеств позиций Р и переходов Т, задаются входная F и выходная Н функции.
Через F (tj) обозначается множество входных позиций, а через H (tj) - множество выходных позиций перехода tj; μ0 - начальная маркировка сети.
F (t1) = {p5},H (t1) = {p1,p2 },
F (t2) = {p1},H (t2) = {p3, p4},
F (t3) = {p3, p4}H (t3) = {p1 },
F (t4) = {p2, p3, p4}H (t4) = {p5 }.
μ0[1 3 0 1 2]
Матричная форма определения сети Петри эквивалентна аналитическому способу задания C = (P,T,D-,D+,μ0). Здесь D- и D+ - матрицы входных и выходных инциденций соответственно размером m × n, где m- число переходов и n- число позиций.
Элемент dij- матрицы D- равен кратности дуг, входящих в i-й переход из j-й позиции.
Элемент dij+ матрицы D+ равен кратности дуг, выходящих из i-ro перехода в j-ю позицию.
Для рассматриваемой сети Петри
Матрица D = D+ - D- называется матрицей инцидентности сети Петри,
2. При начальной маркировке μ0[1 3 0 1 2] сети Петри разрешенными являются переходы t1 и t2.
Условия срабатывания для перехода t3 и t4 не выполняется.
Переход t1
[μ0] ≥ [1000]*D- = [1000] · ; [1 3 0 1 2] ≥ [00001] –
условие выполняется, переход разрешен.
Новая маркировка при срабатывании перехода t1 равна:
.Переход t2
[μ0] ≥ [0100]* D- = [0100] ·;[1 3 0 1 2] ≥ [10000] –
условие выполняется, переход разрешен.
Новая маркировка при срабатывании перехода t2 равна:
.Переход t3
[μ0] ≥ [0010]* D- = [0010] ·;[1 3 0 1 2] ≥ [00110] - условие не
выполняется, переход запрещен.
Переход t4
[μ0] ≥ [0001]* D- = [0001] ·;[1 3 0 1 2] ≥ [01110] –
условие не выполняется, переход запрещен.
Построим дерево достижимости заданной сети.
Проверим, является ли достижимой одна из маркировок, полученных на пятом шаге построения дерева, составив и решив матричные уравнения.
Уравнение
принимает видПеренесем
в левую часть и выполним умножение, тогда .Приравняем составляющие векторов
Система имеет решение x1= 1; x2= 2; x3= 0; x4= 2.
Это значит, что исследуемая маркировка достижима и в последовательности срабатываний переход t1срабатывает один раз, переходы t2 и t4 - по два раза, переход t3не срабатывает.
Конечный автомат задан графом, определенным в задаче 1. Вершины графа отождествляются с состояниями автомата таким образом, что множество состояний Q= {q1,q2 ,…, qn}. Переход автомата из одного состояния в другое осуществляется под воздействием множества входных сигналов X={x1,x2,x3,x4}. Переходы определяются законом отображения Г вершин графа, причем каждому переходу соответствует только одна из букв множества X. При задании графа эти буквы расставить произвольно.
Автомат позволяет вырабатывать выходные сигналы Y={y1,y2,y3}:
y1 - переход из состояния qi в состояние qi (петля);
y2- переход из состояния qiв qjпри i<j;
y3- переход из состояния qi в qj при i>j.
Осуществить структурный синтез конечного автомата. Реализацию осуществить на элементах, указанных в табл.1, в соответствии с номером варианта. Обязательной является минимизация реализуемых функций.
Таблица 1
№ варианта | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Тип элементов | ИНЕ | ИИЛИНЕ | ИНЕ | ИЛИНЕ | ИНЕ | ИИЛИНЕ | ИНЕ | ИЛИНЕ | ИИЛИНЕ | ИНЕ |
Тип триггера | D | JK | T | D | RS | RSD | D | JK | T | D |
Решение:
Множество вершин X = {x1, x2,x3, x4, x5, x6},