Смекни!
smekni.com

Математические основы теории систем (стр. 5 из 5)

Вершины графа отожествляются с состояниями автомата таким образом, что множество состояний Q= {q1,q2, q3, q4, q5, q6}. Переход автомата из одного состояния в другое осуществляется под воздействием множества входных сигналов X={x1,x2,x3,x4}.

Автомат позволяет вырабатывать выходные сигналы Y={y1, y2,y3}.

На основании аналитического описания ориентированного графа из задания № 1 запишем закон отображения состояний автомата:

Гq1 = {q1 (x1/y1), q3 (x2/y2), q2 (x3/y2)},

Гq2 = {q4 (x3/y2), q1 (x4/y3), q3 (x1/y2)},

Гq3 = {q1 (x1/y3), q5 (x2/y2), q2 (x3/y3), q4 (x4/y2)},

Гq4 = {q2 (x1/y3), q6 (x2/y2), q3 (x3/y3), q5 (x4/y2)},

Гq5 = {q3 (x4/y3), q4 (x1/y3), q6 (x2/y2)},Гq6={q4 (x3/y3),q5 (x4/y3)}.

Обобщенная таблица переходов и выходов соответствующего конечного автомата представлена в табл.2.

Таблица 2

X Q q1 q2 q3 q4 q5 q6
X1 q1/y1 q3/y2 q1/y3 q2/y3 q4/y3
X2 q3/y2 q5/y2 q6/y2 q6/y2
X3 q2/y2 q4/y2 q2/y3 q3/y3 q4/y3
X4 q1/y3 q4/y2 q5/y2 q3/y3 q5/y3

Осуществим структурный синтез автомата, заданного табл.1. В качестве элементов памяти используем D-триггеры, в качестве элементной базы используем логические элементы И-НЕ.

Количество букв входного алфавита n = 4

Количество входовp ≥ log2n = log2 4 = 2;

Количество букв выходного алфавита m = 2

Количество выходовe ≥ log2m = log2 3 = 2;

Количество состояний r = 6

Количество триггеровz ≥ log2r = log2 6 = 3.

Приступаем к кодированию:


x
u u1 u2
x1 1 0 5
x2 1 1 4
x3 0 0 5
x4 0 1 5
v1 v2
y1 1 0 1
y2 0 1 9
y3 0 0 9
q w w1 w2 w3
q1 0 0 1 3
q2 0 1 0 3
q3 0 0 0 4
q4 1 0 0 4
q5 0 1 1 3
q6 1 1 0 2

На основании результатов кодирования строим обобщенную таблицу переходов и выходов структурного автомата (табл.3), заменяя состояния, входные и выходные переменные их кодами.

Таблица 3

u1u2 w1w2w3 001 010 000 100 011 110
10 001/10 000/01 001/00 010/00 100/00
11 000/01 011/01 110/01 110/01
00 010/01 100/01 010/00 000/00 100/00
01 001/00 100/01 011/01 000/00 011/00

Используя таблицу переходов D-триггера и данные предыдущей таблицы, составим обобщенную таблицу функционирования структурного автомата (табл.4). Функции возбуждения трех триггеров обозначены через D1, D2, D3, соответственно.

Таблица 4

u1 u2 w1 (t) w2 (t) w3 (t) w1(t+1) w2(t+1) w3(t+1) v1 v2 D1 D2 D3
1 0 0 0 1 0 0 1 1 0 0 0 1
1 1 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 1 0 1 0
0 1 0 0 1 * * * * * * * *
1 0 0 1 0 0 0 0 0 1 0 0 0
1 1 0 1 0 * * * * * * * *
0 0 0 1 0 1 0 0 0 1 1 0 0
0 1 0 1 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0 0 1
1 1 0 0 0 0 1 1 0 1 0 1 1
0 0 0 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1 1 0 0
1 0 1 0 0 0 1 0 0 0 0 1 0
1 1 1 0 0 1 1 0 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 1 0 1 0 1 1
1 0 0 1 1 1 0 0 0 0 1 0 0
1 1 0 1 1 1 1 0 0 1 1 1 0
0 0 0 1 1 * * * * * * * *
0 1 0 1 1 0 0 0 0 0 0 0 0
1 0 1 1 0 * * * * * * * *
1 1 1 1 0 * * * * * * * *
0 0 1 1 0 1 0 0 0 0 1 0 0
0 1 1 1 0 0 1 1 0 0 0 1 1

По этой таблице запишем СДНФ выходных функций V и функций возбуждения триггеров D1, D2, и D3, зависящих от набора переменных u1, u2, w1 (t), w2 (t), w3 (t). В результате получим систему логических функций для построения комбинационной части автомата:

.

.

.

.

.

Минимизируем функции согласно картам Карно:

После минимизации имеем набор функций в базисе И-НЕ

=

.

.

.

Функциональная схема структурного автомата: