Решение
Используем степенное представление интерполяционного многочлена Лагранжа из задачи 6
Для перехода к интегралу с канонической формой используем линейное преобразование: x = α + βt.
Составим систему уравнений:
Подставив x = 1.05 + 0.75t, получим многочлен Лагранжа от переменной t:
Учитывая, что dx = βdt, получим:
Применим квадратурную формулу, полученную в задаче №10
Так как результаты совпали, значит, вычисления произведены верно.
Задача 12
Оценить погрешность определенного интеграла от функции sin(x) в пределах [0,2/3π] по квадратурной формуле наивысшей алгебраической степени точности, полученной в задаче № 10в, по сравнению с аналитически точным. Проделать то же самое над усеченным степенным рядом, представляющим sin(x), в который x входит со степенью не выше третьей.
Решение
Учитывая, что dx = βdt, получим:
Применим квадратурную формулу:
Вычислим аналитически:
Найдем погрешность вычисления:
Проделаем те же операции над усеченным степенным рядом, представляющем sin(x):
Перейдем от пределов [0; 2π/3] к пределам [-1; 1], для этого используем линейное преобразование x = α +βt. Составим систему уравнений:
Учитывая, что dx = βdt, получим
Задача 14
Степенными полиномами Чебышева Ti относительно переменной x (|x| < 1) являются решениями линейного разностного уравнения второго порядка:
Ti+2 - 2x Ti+1 + Ti = 0,
с начальными условиями T0 = 1 и T1 = x.
Найти аналитическое выражение и вычислить значения полинома Чебышева i-й степени, если
и i = 4. Проверить вычисления непосредственно по заданной рекуррентной формуле. Найти положение нулей и экстремумов у многочленов Чебышева в общем виде и для заданных выше x и i. Оценить модуль максимально возможного значения полинома в точках экстремумов.Исходя из того, что
xi = |yi| надо найти T4 т.е. для i = 4
Из Ti+2 - 2xTi+1 + Ti = 0 следует, что
T2 = 2xT1 - T0
T3 = 2xT2 - T1 = 2x(2xT1 - T0) - T1
T4 = 2xT3 - T2 = 2x(2x(2xT1 - T0) - T1) - 2xT1 + T0 = 8x3T1 - 4x2T0 - 4xT1 + T0
Подставим значение T0 = 1 и T1 = x
T4 = 8x4 - 4x2 - 4x2 + 1 = 8x4 - 8x2 + 1
Найдем значения x:
T4 = 0.99980
Проверим по заданной рекуррентной формуле:
T2 = 2·0.00490·0.00490 - 1 = -0.9999
T3 = 2·0.00490·(-0.9999) - 0.00490 = -0.01469
T4 = 2·0.00490·(-0.01469) + 0.9999 = 0.99980
Нули функции находятся, как решения биквадратного уравнения:
8x4 - 8x2 + 1 = 0, где
x1 = 0.9238795
x2 = -0.9238795
x3 = 0.3826834
x4 = -0.3826834
Чтобы найти экстремумы найдем
Задача 16
Выравнивание по всей длине с течением времени температуры T(x, t) на тонком однородном хорошо теплоизолированном стержне описывается дифференциальным уравнением в частных производных с начальным распределением температуры (в градусах Цельсия) по длине стержня в 6 равномерно расположенных с шагом h точках.
T(x0, 0) = T0, T(x1, 0) = T1, …, T(x5, 0) = T5; (Ti = 100·yi ˚C).
На концах стержня в точках x-1 и x6 удерживается нулевая температура.
Применяя конечно-разностное представление производных по пространственной переменной x, свести уравнение в частных производных к системе дифференциальных уравнений в обыкновенных производных относительно температуры T.
Получаем систему диф. уравнений:
Учитывая начальные условия, получим систему уравнений:
Задача 17.
Используя метод Ньютона-Рафсона, найти с относительной погрешностью в одну миллионную нуль многочлена Чебышева Ti(x), полученного в задаче 14. В качестве начального приближения к корню взять
В качестве xi берутся |yi| из таблицы исходных данных.
Решение.
Из задачи 14 возьмем полином Чебышева T4 = 8x4 - 8x2 + 1. В качестве начального приближения к корню возьмем xнач, вычисленное по формуле
Т.к. 8x4 - 8x2 + 1 = 0, то можем сказать, что f(xнач + α) = 0
Воспользуемся DERIVE для нахождения корня с необходимой точностью:
получим такие значения: 0.38234, 0.382689, 0.382683, 0.382683, 0.382683.
На третьей итерации получаются значения корня с нужной точностью.
Задача 19
Скорость изменения переменной x(t) во времени равна функции от этой переменной f(x). Найти аналитическое выражение последней от времени, начиная с t = 0, если в начальный момент x(0) = 0. В качестве f(x) взять степенной многочлен P2(x), полученный в задаче 8. Протабулировать полученное решение с шагом h = 0.1 в интервале [0, 0.5].
Решение
P2(x) = -0.0710314 + 0.989486x – 0.624589x2
Исходя из начальных условий, т.к. dx/dt = f(x), имеем
Т.к. x = F(t), то:
Протабулируем x(t) на интервале [0; 0.5] c шагом h = 0.1:
t = 0 x = 0
t = 0.1 x = -0.0622648
t = 0.2 x = -0.137833
t = 0.3 x = -0.230872
t = 0.4 x = -0.347464
t = 0.5 x = -0.496850
Задача 20
Методом Эйлера в интервале [0, 0.5] с шагом h = 0.1 получить решение нелинейного дифференциального уравнения:
dx/dt = a + bx + cx2,
x(0) = 0
Коэффициенты a, b, c взять из P2(x), полученного в задаче 8.
P2(x) = -0.0710314 + 0.989486x – 0.624589x2
x = x0 + h·P2(x0, t0)
x1 = 0 + 0.5· (-0.0710314) = -0.0355156
x2 = -0.0355156 + 0.5·(-0.0710314 + 0.989486 (-0.0355156)1 –
-0.624589· (-0.03551562) = -0.053854
x3 = -0.053854 + 0.5· (-0.0710314 + 0.989486 (-0.053854)1 –
- 0.624589 (-0.053854)2) = -0.0636315
x4 = -0.0636315 + 0.5· (-0.0710314 + 0.989486 (-0.0636315)1 –
-0.624589 (-0.0636315)2) = -0.0689304
x5 = -0.0689304 + 0.5 (-0.0710314 + 0.989486 (-0.0689304)1 –
-0. 0.624589 (-0.0689304)2) =--0.071827
Задача 23
Проверить заданную систему из трех векторов на линейную зависимость. При обнаружении линейной зависимости поменять местами первые компоненты векторов x1,x2 и выполнить повторную проверку. Из исходных данных векторы формируются так: