Смекни!
smekni.com

Математический анализ (стр. 1 из 4)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХПИ»

Кафедра «Вычислительной техники и програмирования»

Расчётно–графическое задание

по курсу «Теория алгоритмов и вычислительные методы»

Харьков – 2005


Исходные данные:

Вариант № y0 y1 y2 y3 y4 y5 h x0
64 -0.02 0.604 0.292 -0.512 -1.284 -2.04 0.5 0.3

Задача 1

Исходные данные вводятся в ЭВМ как абсолютно точные числа и представляются в ней в виде чисел с плавающей точкой с относительной погрешностью в одну миллионную. Введенные данные x0 и y0 служат основой формирования двух векторов x=(x0, x1, …, xn) и y=(y0, y1, …, yn) по рекуррентным формулам:


Вычислить скалярное произведение с := (x, y) по алгоритму:

с := 0; i := 0;

while i < n + 1 do c := c + xi · yi;

и оценить аналитически и численно инструментальную абсолютную и относительную погрешности.

Решение

Поскольку данные представляются в ЭВМ в виде чисел с плавающей точкой с относительной погрешностью, то

x0 = x0(1+δ)

y0 = y0(1+δ)

C0 = x0y0(1+δ)




Приi = 1

Приi = 2

x2 = x03(1+δ)5

y2 = y0(1+δ)3

C2 = x0y0(1+δ)5 + x02(1+δ)7 + x03y0(1+δ)10

Приi = 3

x3 = x04(1+δ)7

y3 = (1+δ)5

C3 = x0y0(1+δ)6 + x02(1+δ)8 + x03y0(1+δ)11 + x04(1+δ)14

При i = 4

x4 = x05(1+δ)9

y4 = y0(1+δ)7

C4 = x0y0(1+δ)7 + x02(1+δ)9 + x03y0(1+δ)12 + x04(1+δ)15 + x05y0(1+δ)18


Выявим закономерность изменения Ci:

При расчете Cn без учета погрешности исходных данных и погрешности вычисления, получим

Обозначим эту сумму как S1.

Тогда абсолютная погрешность S2


а относительная погрешность


Оценим инструментально относительную и абсолютные погрешности при n = 10

S1 = 0.0923071

S2 = 1.45914·10-6

S3 = 1.58075·10-5

Задача 2

Для функции g(x), заданной своими значениями в шести точках, составить таблицу всех повторных разностей. Преобразовать функцию g(x) с помощью линейного преобразования x = a + b * k в функцию G(k) с целочисленным аргументом k. В качестве проверки правильности заполнения таблицы вычислить аналитически конечную разность Δng(x) = ΔnG(k) для n = 5.

Решение

Составим таблицу всех повторных разностей:

k x y Δy Δ2y Δ3y Δ4y Δ5y
0 0.3 0.02 -1.576 0.044 -0.136 0.66 -0.54
1 1.1 -1.556 -1.532 -0.092 0.524 0.12
2 1.9 -3.088 -1.624 0.432 0.644
3 2.7 -4.712 -1.192 1.076
4 3.5 -5.904 -0.116
5 4.3 -6.02

Найдем формулу перехода от x к k:


Выполним проверку, вычислив аналитически конечную разность

Δng(x)= ΔnG(k)дляn = 5:

Конечные разности, вычисленные аналитически и таблично Δng(x) = ΔnG(k) для n = 5 совпали, следовательно, таблица повторных разностей составлена верно.

Задача 3

Таблично заданную функцию G(k) с целочисленным аргументом представить в виде разложения по факториальным многочленам (z(n) = z · (z-1) · (z-2) · … · (z - n + 1)) и преобразовать его в степенные многочлены G(z) и G(x).

Решение

Представим функцию G(k)в виде разложения по факториальным многочленам:


Преобразуем функцию G(k) в степенной многочлен G(z):

Выполним проверку при k = 1:


0.604=0.604

Так как результаты совпали, значит степенной многочлен G(z) представлен правильно.

Преобразуем функцию G(k) в степенной многочлен G(x). Зная, что получим:



Проверим вычисления при x = 0.8:


0.6045128 ≈ 0.604

Так как результаты совпали, то вычисления сделаны верно.

Задача 4

Вывести аналитическое выражение суммы для функции целочисленного аргумента G(z). Проверить правильность вычисления полученного выражения прямым суммированием табличных значений G(k), k = 0, 1, 2, 3, 4, 5 (m = 5).

Решение.

Для вычисления значения суммы используем функцию G(z) в виде разложения по факториальным многочленам, полученным в задаче 3:



где

Для проверки, просуммируем значения G(k) из таблицы:

-0.02 + 0.604 + 0.292 - 0.512 - 1.284 - 2.04 = - 2.96

- 2.96 = - 2.96

Так как результаты вычисления аналитического выражения и суммы табличных значений G(k) совпали, значит аналитическое выражение для суммы выведено правильно.

Задача 5

Составить таблицу упорядоченных разделенных разностей для g(x). Проверить правильность таблицы для разделенной разности [x0; x1; x2; x3] по формуле ее аналитического представления.

Решение

Составим таблицу упорядоченных разделенных разностей для g(x):

xi g(xi) [xi; xi+1] [xi; xi+1; xi+2] [xi; xi+1; xi+2; xi+3] [xi; xi+1; xi+2; xi+3; xi+4] [xi; xi+1; xi+2; xi+3; xi+4;xi+5]
0.3 -0.02 1.248 -1.872 0.592 0.0533333 -0.1567999
0.8 0.604 -0.624 -0.984 0.6986666 -0.3386666
1.3 0.292 -1.608 0.064 -0.0213333
1.8 -0.512 -1.544 0.032
2.3 -1.284 -1.512
2.8 -2.04

Для проверки правильности заполнения таблицы разделенных разностей, вычислим разделенную разность пятого порядка по формуле ее аналитического представления:


Так как результаты вычислений совпали, значит, таблица разделенных разностей составлена правильно.

Задача 6

Получить интерполяционные многочлены Лагранжа и Ньютона, проходящие через первые четыре точки таблично заданной функции G(x), и сравнить их степенные представления.

Решение

Для нахождения интерполяционного многочлена Лагранжа используем формулу

где n = 3.

Проведем проверку вычислений, подставив x=0.8 в интерполяционный многочлен Лагранжа, получим y1=0.604

Интерполяционный многочлен Ньютона находится по формуле: