2. Линейные модели и характеристики систем управления
2.1 Модели вход-выход
Основными формами представления конечномерных линейных непрерывных стационарных детерминированных операторов преобразования входных переменных f(t) в переменные выхода y(t) являются: дифференциальные уравнения, передаточные функции, временные и частотные характеристики. Для одномерных систем переменные f(t) и y(t) являются скалярами. Эти и некоторые другие представления операторов рассматриваемого класса моделей могут быть приняты за основу задания динамических свойств в терминах вход-выход. Если для конкретных исследований та или иная форма оказывается более предпочтительной, ставится и решается задача перехода от одной формы к другой, например задача построения временных и частотных характеристик по дифференциальному уравнению или передаточной функции.
Обыкновенное линейное дифференциальное уравнениеn-порядка с постоянными коэффициентами обычно записывается так:
(1)Если ввести оператор дифференцирования по времени , то уравнение (1) запишется в компактном виде:
A(p)y(t) = B(p)f(t), (2)
где A(p) = anpn + …… + a1p + a0; B(p) = bmpm + …… + b1p + b0 – операторные полиномы. Дифференциальное уравнение дополняется начальными условиями
.Передаточная функция равна отношению изображений по Лапласу переменных выхода и входа при нулевых начальных условиях W(s)=Y(s)/F(s), где интегральное преобразование Лапласа определяется так:
Преобразуя дифференциальное уравнение (1) при нулевых начальных условиях, получаем алгебраическое уравнение для изображений:
A(s)Y(s) = B(s)F(s).
Отсюда следует, что передаточная функция легко записывается по дифференциальному уравнению
W(s) = B(s)/A(s) (3)
и, наоборот, по передаточной функции сразу записывается дифференциальное уравнение.
Зная передаточную функцию и изображение переменной входа, легко найти изображение выхода
Y(s) = W(s)F(s).
Пример. Пусть система описывается дифференциальным уравнением второго порядка:
Преобразуем это уравнение по Лапласу, для чего воспользуемся свойством линейности оператора преобразования L, а также теоремой о дифференцировании оригинала:
a2(s2Y(s) – sy(0) – y¢(0)) + a1(sY(s) – y(0)) + a0Y(s) = b0F(s).Последнее уравнение перепишем в следующем виде:
(a2s2 + a1s + a0)Y(s) = b0F(s) + a2sy(0) + a2y'(0) + a1y(0).
При нулевых начальных условиях y(0) =y'(0) = 0 отношение изображений, т.е. передаточная функция
Оператор, связывающий вход и выход, можно задать коэффициентом и множествами нулей (корней полинома) zj; j = 1, …, m и полюсов (корней полинома знаменателя) pi; i = 1, …, n. Передаточная функция будет равна:
(4)В отличие от полиномиальной формы (3) форму задания передаточных функций (4) иногда называют факторизованной.
Вводится понятие структуры оператора преобразования. Для дифференциального уравнения n-го порядка (1) и передаточной функции (3) задание структуры означает задание целых чисел – степеней n = deg A и m = deg B – полиномов А и В.
Параметрамиоператора являются коэффициенты полиномов.
Временные характеристики являются одной из форм представления операторов преобразования переменной f(t) в переменную y(t). Импульсная переходная функция, или функция веса w(t) – реакция системы на единичный идеальный импульс (рис.4, а)
при нулевых начальных условиях. переменная выхода определяется как интеграл свертки: (5)т.е. в этом случае оператор преобразования имеет форму интегрального уравнения.
Другая часто употребляемая временная характеристика – переходная (рис.4, б) характеристика h(t) – реакция системы на единичную ступенчатую функцию1(t) при нулевых начальных условиях. На рис.4 приведен примерный вид временных характеристик для системы второго порядка.
Частотные характеристики элементов и систем представляют собой зависимость параметров установившихся реакций на гармонические сигналы всех частот и единичных амплитуд. В линейных системах форма и частота установившейся реакции совпадают с входом. Комплексная частотная характеристика W( ) дает возможность определить амплитуду
и фазу гармонического сигнала на выходе системы по значению частоты: (6)где
и j(w)== argW(jw) – амплитудная и фазовая частотные характеристики; , и – вещественная и мнимая частотные характеристики.На рис.5. изображен пример годографа W , называемого амплитудно-фазовой характеристикой (АФХ). Реальные объекты с повышением частоты хуже пропускают сигналы – ослабляют амплитуду и вносят отрицательный фазовый сдвиг.
Амплитудно-частотные характеристики удобно представлять в логарифмическом масштабе:
Если частота изменяется в логарифмическом масштабе, то логарифмические амплитудно-частотные характеристики (ЛАЧХ) во многих практически важных случаях мало отличаются от прямолинейных асимптот с наклонами, кратными 20 дБ/дек. На рис.6 приведен примерный вид асимптотической ЛАЧХ; штриховая кривая – точная ЛАЧХ. Там же указаны наклоны асимптот в децибелах на декаду.Хотя за основу задания динамических свойств систем может быть принята любая из форм представления операторов, для конкретных исследований та или иная форма оказывается более рациональной и возникает необходимость перехода от одной формы к другой. Многие задачи анализа связаны с преобразованием формы представления оператора. В ряде случаев эта процедура составляет наиболее трудоемкий этап анализа – построение частной модели, т.е. приведение к форме, позволяющей непосредственно вычислить показатели качества и вывести суждение о соответствии поведения системы заданным требованиям (например, построение временных или частотных характеристик системы управления).