Смекни!
smekni.com

Математическое моделирование и расчет систем управления техническими объектами (стр. 4 из 10)

Существуют методы построения временных характеристик по частотным, базирующиеся на обратном преобразовании Фурье. В случае, когда исходная информация об объекте представлена в форме дифференциального уравнения (1), временные характеристики получают его решением.

В классической теории автоматического управления для решения дифференциальных уравнений часто привлекают так называемый операторный метод, связанный с преобразованием Лапласа. Метод особенно удобен в случае типовых воздействий в виде обобщенных функций и позволяет легко учесть ненулевые начальные условия.

Пусть дано дифференциальное уравнение n-порядка звена или системы автоматического управления (2). Необходимо получить выражения для импульсной переходной функции (функции веса) w(t), переходной характеристики h(t), а также для реакции в случае воздействия общего вида. Пусть изображение по Лапласу воздействия на входе системы или звена представляет собой дробно-рациональную функцию от s:

.

Если преобразовать по Лапласу дифференциальное уравнение n-го порядка при ненулевых предначальных условиях, то после разрешения полученного алгебраического уравнения относительно изображения переменной выхода имеем

. (7)

Здесь полином AH(s) определяется предначальными условиями. Если все предначальные условия нулевые, то изображение выхода

где W(s)передаточная функция.

Искомое решение – переменная на выходе системы (оригинал) получается обратным преобразованием Лапласа:

(8)

где с – абсцисса сходимости.

Формула обращения Римана – Меллина устанавливает однозначное соответствие между оригиналом и изображением в точках непрерывности оригинала. Имеются алгоритмы и программы, позволяющие вычислять интеграл (8) при произвольных функциях Y(s). Практическое вычисление оригинала у(t) удобно производить, основываясь на теореме о вычетах, согласно которой значение интеграла (8) может быть представлено суммой вычетов подынтегральной функции,

,

где ResY(s) – вычет функции Y(s) в полюсе si; i = 1,...,nY; nY – число полюсов изображения Y(s); при t <0 функция у(t) = 0.

Для обыкновенных линейных дифференциальных уравнений и типовых воздействий изображение Y(s) является дробно-рациональной функцией, которую можно представить в виде суммы простейших дробей:

, (9)

где

– производная полинома AY по s; siпростые полюсы;

Оригинал y(t) в соответствии с разложением (9) имеет вид:

.

Импульсная переходная функция (функция веса) w(t) представляет собой реакцию системы на

-функцию при нулевых начальных условиях. Поскольку изображение
-функции
, то функция веса представляет собой обращение по Лапласу передаточной функции и
.

Разложение передаточной функции на сумму простейших дробей в случае простых полюсов si; i = 1, …, n имеет вид:

, (10)

где Ciкоэффициент разложения (вычета),

. (11)

Пример. Рассмотрим определение функции веса с помощью формул (10) и (11) для передаточной функции

. (12)

Полюсы передаточной функции s1 = -1; s2 = -2. Разложение (12) на сумму простейших дробей имеет вид:

.

Обратное преобразование Лапласа дает

.

Переходная характеристика h(t) представляет собой реакцию системы на единичную ступенчатую функцию I(t) при нулевых начальных условиях. Поскольку

, то
.

Полюсами изображения являются полюс воздействия s1= 0 и полюсы передаточной функции. Легко убедится, что

,
.

Пример. Рассмотрим получение переходной характеристики системы с передаточной функцией (12). Разложение изображения H(s) на сумму простейших дробей:

,

где

;

;

.

Следовательно, переходная характеристика описывается функцией

.

В общем случае произвольного воздействия разложение изображения переменной выхода (7) запишется так:

, (13)

где si, i = 1, …, n – полюсы передаточной функции W(s); sk, k = 1, …, nF – полюсы изображения воздействия F(s); принято, что

, т. е. полюсы воздействия не равны полюсам передаточной функции (нет обобщенного резонанса).

В выражении (13) первая группа слагаемых определяет переходную составляющую вынужденного движения yпер(t); вторая группа – установившаяся составляющая вынужденного движения yуст(t), третья – свободные движения yсв(t):


.

Установившееся вынужденное движение yуст(t) обусловлено полюсами изображения воздействия sk; переходная составляющая вынужденного движения yпер(t) образуется из-за ненулевых посленачальных условий (изменение начальных условий приложением в момент времени t = 0 конкретного воздействия) и определяется полюсами передаточной функции; свободные движения yсв(t) имеют место при ненулевых предначальных условиях и также определяются полюсами передаточной функции.

Если анализируется автономная система автоматического управления Ms, представленная в форме однородного дифференциального уравнения

; y(0),

то его решение имеет вид:

. (14)

Если изображение Y(s) имеет кратные полюсы, то вместо формул (13), (14) записываются более сложные выражения.

2.3 Построение частотных характеристик

Частотные характеристики (6) – амплитудную R(

) и фазовую

можно получать экспериментальным путем, если удается подавать на вход устойчивого объекта гармонические воздействия различных частот из диапазона существенного для выявления требуемых свойств объекта. Статистические методы непараметрической идентификации (спектральный анализ) позволяют оценить значения частотных характеристик путем обработки временных последовательностей на входе и выходе объекта.

Частотные характеристики можно получить по временным характеристикам с помощью преобразования Фурье.

В том случае, когда исходная информация об объекте представлена в форме дифференциального уравнения (1), частотные характеристики строят расчетным путем.

Рассмотрим переходы от дифференциального уравнения n-порядка (1) и передаточной функции (3) к частотным характеристикам.

Установившиеся реакции линейной системы на гармоническое воздействие единичной амплитуды

соответствуют частному решению неоднородного дифференциального уравнения (2). Будем искать частное решение: