где R(w), j(w) –амплитуда и фаза, в общем случае зависящие от частоты.
Учтем, что
, ; , .Подставим эти соотношения в неоднородное дифференциальное уравнение (2), записанное в операторной форме,
.После деления обеих частей на ехр{jwt} можно записать:
.Таким образом, амплитудно-частотная характеристика находится как модуль
,а фазовая частотная характеристика – как аргумент
j(w) = argW(jw)
комплексной частотной характеристики W(jw).
Одновременно получаем переход от передаточной функции к частотным характеристикам. Комплексная частотная характеристика получается заменой аргумента передаточной функции s на jw:
.В общем случае s может принимать значения на любом контуре комплексной плоскости.
Вычисление значений частотных характеристик для конкретного s = jw(а в общем случае s=a + jw) сводится к вычислению значений полиномов В(s) и А(s) с последующим делением полученных комплексных чисел. При этом получаются значения вещественной P(w) и мнимой Q(w) частотных характеристик. Значение амплитудной частотной характеристики вычисляется как
Трудности возникают при расчете значений фазочастотной характеристики по формуле
; k = 0, … (15)Значения j(w) получаются на интервале (- p, p), поэтому в случае систем высокого порядка для определения истинных значений фазовых сдвигов принимается предположение о том, что в пределах выбранного шага частот j(w) не изменяется на ± p, т.е. корни полиномов B(s) и A(s) располагаются достаточно далеко от мнимой оси.
Соотношение (15) не определяет аргумент j(w) комплексного числа W(jw), так как ему вместе сj удовлетворяет и j + p. Однако из-за непрерывности фазовой характеристики j(w), принимающей отличные от нуля значения, она однозначно характеризуется текущим tgj(w) = Q(w)/P(w), wmin < w < wmax и начальным j(w0);wmin < w < wmaxзначениями. На этом свойстве непрерывности фазовой характеристики можно получить алгоритм построения частотных характеристик, если истинное значение j(w0) лежит в пределах (- p, p).
2.4 Построение моделей по системе дифференциальных уравнений
Системы дифференциальных уравнений обычно получаются в результате построения аналитическим методом математических моделей физических систем с сосредоточенными компонентами.
Пусть исходные знания об объекте управления имеют вид некоторой физической системы с сосредоточенными компонентами; это может быть, например, многоконтурная электрическая или механическая схема. На основе соответствующих законов по определенным правилам записываются компонентные уравнения и уравнения связей. Далее эти уравнения можно привести к следующему виду:
i = 1, …, N;(16) q = 1, …, K.Уравнения (16) можно записать в матричном виде:
A(p)x(t) = B(p)f(t);
y(t) = C(p)x(t),
где х – вектор внутренних переменных размерности N; f и y – векторы переменных входа и выхода размерностей Р и K соответственно; А(р), В(р), С(p) – полиномиальные матрицы; обычно матрица С – числовая, т. е. состоит из нулей и единиц, указывающих, какие из переменных х принимаются за выходные.
Уравнения (16), (17) называют непричинно-следственными, между внутренними переменными xi(t) нет объективных причинно-следственных отношений.
При определенных условиях систему (16) можно записать в форме системы дифференциальных уравнений первого порядка, разрешенных относительно производных,
дополненной уравнениями выходов
yq(t) =
q = 1, …, K.Модели в терминах вход-состояние-выход используют понятие состояния. Состояние динамического объекта (с памятью) – необходимая и достаточная информация для определения будущего поведения по дифференциальным уравнениям при заданных входных воздействиях независимо от того, каким путем система пришла в это состояние. Для конечномерных систем состояние представляется как n-мерный вектор n(t); при t = 0 вектор n(0) – начальное состояние. Система дифференциальных уравнений первого порядка в так называемой нормальной форме пространства состояний (стандартизованной векторно-матричной форме) записывается следующим образом:
An + Bf, n(0);(18)
y = Cn + Df,
где f–Р-мерный вектор входа;у – K-мерный вектор выхода; A– матрица состояний; B– матрица входа; C – матрица выхода; D – матрица обхода соответствующих размеров. Первую векторно-матричную строку в системе уравнений (18) называют уравнениями состояний, а вторую – уравнениями выхода.
Пример. При n = 2 дифференциальные уравнения (18) системы с одним входом и одним выходом в раскрытой форме запишутся так:
Матрицы будут иметь следующий вид:
A=
; B= ;C=(c1c2); D=d.
Если первое уравнение в системе (18) записать с использованием оператора дифференцирования р, то имеем: (pI – A)n = Bf, где I – единичная матрица. Таким образом, уравнения в форме пространства состояний являются частным случаем системы дифференциальных уравнений (17) с матрицей
A(p) = pI – A. (19)
Автономная система описывается однородным дифференциальным уравнением
; ,причем начальные условия являются математическим отражением предыстории. Если они ненулевые, то система совершает так называемые свободные движения. В конечномерных системах свободные движения определяются полностью оператором А(р) и конечным числом начальных условий независимо от того, каким путем система пришла в это состояние к моменту начала наблюдения.
Автономная система может описываться системой дифференциальных уравнений различных порядков:
A(p)x(t) = 0, x(0);
y(t) = Cx(t),
а также дифференциальными уравнениями в форме пространства состояний
= An, n(0);y = Cn.
Рассмотрим построение моделей вход-выход по системе дифференциальных уравнений. Пусть дана система дифференциальных уравнений (17). Построение модели в терминах «вход-выход» означает исключение внутренних переменных, что проще выполнить, если от дифференциальных уравнений перейти к системе алгебраических уравнений для изображений, приняв нулевые начальные условия:
A(s)X(s) = B(s)F(s); (20)
Y(s) = CX(s).
При небольшом числе уравнений применяют метод последовательных исключений. Пусть, например, объект с одним входом f и одним выходом у имеет две внутренние переменные x1 и х2:
(21)Решая систему (21) относительно Y(s), получим:
Теперь по выражению
легко получить полиномы числителя и знаменателя передаточной функции и записать выражение для одного дифференциального уравнения. Используем операции перемножения и вычитания полиномов.
В случае, когда требуется вычислить передаточную функцию, связывающую одну из выходных переменных у = xq с одним из воздействий fr,применяют правило Крамера:
, (22)где полиномиальная матрица Aqr получена из матрицы А заменой q-го столбца r-м столбцом матрицы В. Знаменатель передаточной функции Wqr(s) независимо от номеров входа r и выхода q равен характеристическому полиному системы