Система в целом имеет частотную характеристику, близкую к обратной частотной характеристике звена обратной связи. Практически усиление велико, если Lр(w) > 16-20дБ. На остальных частотах, где -16дБ< LP(w)<16дБ, необходимо пользоваться точной формулой (70) или специальными номограммами замыкания.
Рассмотрим пример системы, образованной интегрирующим звеном, охваченным единичной отрицательной обратной связью (рис.20, а). На рис.20, б изображены ЛАЧХ L1 и L2 этих звеньев. На частотах w < 0,1 с-1 усиление контура превышает 20 дБ.
Следовательно, амплитудно-частотная характеристика замкнутой системы на этих частотах определяется только свойствами звена обратной связи, т.е. замкнутая система на низких частотах с большой степенью приближения ведет себя как безынерционное звено с единичным усилением.
Напротив, на частотах w > 10 с-1 усиление контура ниже –20 дБ. Здесь контур практически разомкнут – замкнутая система ведет себя как интегрирующее звено,
На комплексной частоте нуля передаточной
функции Wp усиление контура равно нулю, т.е. контур как бы разомкнут на соответствующей комплексной частоте. Если Wp имеет такой полюс, то в разложении Wp на сумму простейших дробей соответствующий коэффициент Сiравен нулю.
На рис.21 изображена структурная схема системы с единичной обратной связью, где звено в прямой цепи
W1(s) = Wp(s)
представлено как параллельное соединение простейших звеньев.
2.9 Неопределенность моделей систем управления
Математические модели не отражают исчерпывающим образом динамические свойства систем управления в силу идеализации и упрощений, неизбежных при моделировании, неточной реализации алгоритмов управления и изменений характеристик объектов и других элементов в процессе эксплуатации. Если изменения характеристик происходят достаточно медленно по сравнению с длительностью процессов управления, то вместо нестационарных моделей (например, дифференциальных уравнений с переменными коэффициентами) можно рассматривать стационарные модели.
Модели систем управления строятся для строго оговоренных условий взаимодействия со средой, и их адекватность оригиналам определяется и характеристиками воздействий. Значения параметров, структура и класс операторов зависят от амплитуд изменения и частотного спектра сигналов.
Линейные модели обычно строят для малых отклонений переменных от выбранных установившихся режимов. Если амплитуды сигналов превышают некоторое определенное значение А, то приходится строить нелинейные модели, как правило, учитывающие всевозможные ограничения в реальных элементах. Иногда область адекватности линейных моделей ограничивается малыми амплитудами а, для которых следует учитывать такие нелинейные явления, как зону нечувствительности, сухое трение и др.
Выбранные структуры операторов (порядки дифференциальных уравнений) обеспечивают адекватность моделей по отношению к сигналам, частоты которых не превышают заданного предела. Границу области адекватности W обычно удается несколько расширить путем усложнения структуры операторов. На рис.22 показана область адекватности моделей на плоскости амплитуд а и частот wсигналов.
Таким образом, модели систем управления оказываются не полностью определенными. При интерпретации результатов анализа и синтеза необходимо всегда иметь в виду неполную определенность моделей и учитывать ограниченность области их адекватности. Анализ наряду с выявлением основных свойств поведения систем управления должен включать и исследование чувствительности характеристик к вариациям параметров, структур операторов и топологии систем.
3. Нелинейные элементы систем управления
3.1 Безынерционные нелинейные элементы
В теории и практике управления элементы и системы рассматривают как преобразователи сигналов – носителей информации о цели, состоянии объекта и воздействиях среды (рис.23). Как известно, линейный безынерционный элемент полностью задается значением его коэффициента усиления.
Нелинейные зависимости между постоянными значениями входных и выходных сигналов у = Р'(х) могут задаваться аналитически, графически или таблично. В том случае, когда нелинейный элемент (НЭ) имеет один вход и один выход, особенно наглядны графики статических характеристик (СХ) (рис.24).
Условия преобразования сигналов безынерционными НЭ зависят от уровней сигналов и не зависят от их частоты. Приведем некоторые примеры безынерционных НЭ и их СХ.
Рассмотрим нелинейные элементы с кусочно-постоянными СХ. Простейшим представителем нелинейностей этой группы является так называемое идеальное реле (рис.25, а):
Более тонкое изучение может показать, что релейное устройство имеет гистерезис (рис.25, б). Выражение для двузначной СХ с разрывами первого рода можно записать так:
где b– половина зоны неоднозначности СХ; y0– состояние реле, равное значению у до входа в зону неоднозначности. Таким образом, этот безынерционный НЭ обладает памятью: значение его выхода определяется не только значением входа в тот же момент, но также и предысторией (состоянием) НЭ по уровню сигнала.
Другим типом НЭ с кусочно-постоянной однозначной СХ является квантование сигналов по уровню в преобразователях аналог-код, предназначенных для ввода информации о состоянии непрерывных процессов в цифровые управляющие устройства (рис.25, в). Малая разрядность ЭВМ может оказаться существенным препятствием к достижению высокой точности и хорошего качества процессов в окрестности положений равновесия.
Теперь обратимся к нелинейным элементам с кусочно-линейными СХ. На рис.26, а показан график СХ НЭ типа «насыщение»:
Как правило, эта нелинейность вводится в модели для учета ограничений уровней переменных при исследовании поведения систем управления в режимах больших отклонений от положения равновесия.
Нелинейный элемент типа «зона нечувствительности» (рис.26, б) учитывает реальные свойства датчиков, исполнительных механизмов и других устройств при малых входных сигналах.
Нелинейность типа «люфт» (рис.26, в) является многозначной – одному значению входа соответствует бесчисленное множество (континуум) значений выхода. Этот НЭ моделирует кинематические сочленения механических приборов и устройств (например, редукторов).
Приведенные кусочно-линейные СХ непрерывны, но имеют разрыв производной dy/dx. Существуют и кусочно-линейные СХ с разрывами первого рода.
Рассмотрим нелинейные элементы с гладкими СХ. Гладкие СХ имеют непрерывные производные. Таковыми являются характеристики термопары (рис.27, а), устройства возведения входного сигнала в квадрат (рис.27, б), в куб (рис.27, в), индукционных электромеханических преобразователей угла, электромагнитных явлений с гистерезисом и др.
Нелинейные зависимости между значениями входа и выхода можно задавать параметрически – парой функций x(t), y(t); исключая параметр t, получим непосредственную связь между переменными входа и выхода. В случае однозначных СХ в качестве входа x(t) особенно удобен периодический сигнал треугольной формы с достаточной амплитудой, выход НЭ будет периодически повторять форму СХ. Для сложных НЭ с неоднозначными СХ выбор функции x(t) из условия исчерпывающего задания НЭ парой вход-выход является нетривиальной задачей. По существу, речь идет об экспериментальном исследовании НЭ, успех которого зависит от априорной информации.
3.2 Динамические нелинейные элементы
В общем случае дифференциальные уравнения, описывающие элементы систем или сами системы, являются нелинейными:
(71)Иногда они разрешаются относительно старшей производной переменной выхода:
Примерами служат дифференциальные уравнения математического маятника
и уравнение Ван дер Поля:Часто дифференциальные уравнения представляются в форме Коши:
(73)где n – вектор переменных состояния; j – вектор-функция; y – функция выхода. В уравнениях (71)-(73) предполагается, что нелинейные функции заданы аналитически.