Смекни!
smekni.com

Математическое моделирование технических объектов (стр. 2 из 4)

1.3 Функции системы MathCAD

Встроенные функции системы:

MathCAD содержит более двухсот встроенных функций. Все они разбиты на группы. Для вставки стандартной функции необходимо на панели инструментов щелкнуть по кнопке f(x)- вставить функцию. Раскроется новое окно, в котором в левом списке будут представлены группы функции, а в правом – сами функции. Необходимо выбрать из списка нужную функцию и щелкнуть по кнопке "вставить"- Insert.

Основные встроенные функции:

1. тригонометрические функции [sin(x), cos(x), tan(x), cot(x),csc(x)];

2.гиперболические [sinh(x), cosh(x), tanh(x), coth(x), csch(x), sech(x)];

3. обратные тригонометрические [asin(x), acos(x), atan(x) и т.д.];

4. обратные гиперболические [asinh(x), acosh(x) и т.д.];

5. показательные и логарифмические[exp(x), ln(x), log(x),

].

Функции пользователя в MathCAD.

ользовательские функции применяются если одно и то же выражение должно быть рассчитано несколько раз для разных наборов исходных данных.

Формат записи функции пользователя:

<ИФ>(<СП>):=<Выражение>

где <ИФ> - имя функции (задается как любой идентификатор разрешенный системой);

(<СП >) - список параметров (в скобках через запятую указывается список функции);

<Выражение> - содержит доступные системе операторы и функции с аргументом указанным в списке параметров.


1.4 Переменные В MathCAD

Переменными в MathCAD называются объекты, имеющие некоторые значения, которые могут меняться в процессе вычисления.

В MathCAD различают три вида переменных:

1. Простые переменные в MathCAD используются в качестве операндов при выполнении операций сложения, вычитания, умножения, деления, возведения в степень, а также в качестве аргументов встроенных математических функций, при вычислении арифметических выражений и в операциях отношения.

Для определения переменной необходимо ввести имя переменной, затем знак : = далее присваиваемое значение или выражение.

Этап определения переменных должен быть по ходу вычислений выше, чем этап вычислений. Однако при определении глобальных переменных нет разницы в их местоположении. Для таких переменных необходимо вводить знак глобального присваивания

.

2. Ранжированные переменные берут свои значения из диапазона с заданным шагом и изменяются от начального значения до конечного. Формат записи ранжированными переменными:

<ИП> : = <НЗ>,[<СЗ>]..<КЗ>

где ИП- имя переменной;

НЗ- начальное значение переменной;

CЗ- первое следующее за начальным значение переменной;

КЗ- конечное значение переменной;

[ ]- данный параметр может отсутствовать. В этом случае шаг изменения переменной будет равен единице.

3. Индексированные переменные – это известные нам массивы (матрицы).

Доступ к каждому элементу массива происходит при указании имени массива и порядкового номера элемента (индекса) в данном массиве.

Для задания массива необходимо:

1) ввести имя массива;

2) вести знак присвоить;

3) вызвать панель с матричными операторами;

4) щелкнуть по шаблону матрицы;

5) ввести количество столбцов и строк матрицы;

6) ввести значение элементов матрицы.

По умолчанию нумерация строк и столбцов в матрицах, массивах и векторах начинается с нуля, т.е. первый столбец имеет номер 0 и т.д.

Для того чтобы измерение начиналось с единицы необходимо в самом начале документа MathCAD встроенной переменной, отвечающей за нумерацию строк и столбцов присвоить значение 1:

ORIGIN:=1

Каждая переменная имеет свое имя (идентификатор). Имя переменной – это набор из букв, цифр или иных символов системы, обязательно начинающихся с буквы.

1.5 Решение уравнений с использованием функции "FIND", "Minerr"

Для решения необходимо:

1)задать начальное приближение переменной;

2)ввести ключевое слово GIVEN;

3)записать решаемое уравнение;

4)ввести функцию findс неизвестными в качестве параметров.

Функция findвозвращает только один корень, поэтому для нахождения всех корней необходимо построить график функции и исходя из него выбрать начальное приближение для каждого из корней.

Если уравнение не имеет точного решения, например: график функции не пересекается с осью абсцисс, можно найти значение при котором невязка будет минимальна(в случае двух уравнений минимальным будет расхождение между двумя кривыми). Для этого используется функция Minerr. Обращение к функции Minerr аналогично обращению к функции find. Только функция find даёт точное решение а Minerr- приближённое. Если точное решение существует, то функция Minerr позволяет его найти также как и функция find. Если точного решения нет, то функция find указывает на ошибку а Minerr находит значение с минимум невязки.

1.6 Исследование функций на экстремум

При помощи функций Maximize и Minimaze можно вычислить экстремумы непрерывной функции.

Поиск экстремума функции можно проводить двумя методами:

1) Приравнивать производную к нулю;

2) Используя функции Minimize, Maximize.

Отметить экстремальные точки нужно следующим образом : войти в режим форматирования графика и в появившихся местах ввода на оси Х и У ввести полученные значения.

1.7 Графики в MathCAD

Пакет MATHCAD предоставляет широкие графические возможности. Кроме того, здесь можно использовать чертежи и рисунки, полученные в других графических системах.

Нажатием буквально одной кнопки можно задать шаблон для генерации двумерного графика, причем в одних и тех же осях может быть несколько графиков одновременно. В MATHCAD`eпредставлены следующие виды графиков: декартовый (X-Yplot), полярный (Polarplot), поверхности (Surfaceplot), карта линий уровня (Contourplot), векторное поле (VectorFieldplot), трехмерный точечный (3DScatterplot), трехмерная столбчатая диаграмма (3DBarChart). Все графики являются стандартными объектами MATHCAD`a: их можно редактировать, а при пересчете исходных данных они автоматически перерисовываются. Кроме того, в средствах ‘объемной’ визуализации данных существуют возможность композиции задних планов. Существуют большое количество опций для работы с осями, а также возможность импортировать графические изображения.

Построение двумерных графиков:

Перед построением графика необходимо определить исследуемую функцию и аргумент, заданный в виде диапазонной или индексированной переменной, а затем:

1) установить курсор в место, где будет построен график;

2) на панели Graph выбрать кнопку двумерный график и кнопку xy;

3) в появившемся на месте курсора шаблоне двумерного графика необходимо ввести на оси абсцисс по центру в черном квадрате имя аргумента, а на оси ординат - имя функции;

4)щелкнуть мышью вне шаблона графика.

1.8 Учет размерности

В MathCAD встроено большое количество единиц измерения. С ними можно обращаться как со встроенными переменными. Чтобы связать единицу измерения с числом, необходимо умножить это число на наименование единицы измерения. Перед началом работы с единицами измерений необходимо установить систему размерности. В MathCAD этих систем пять:SI, MKS, CKS, US, Внесистемная.

1.9 Программирование в MathCAD

Возможности MathCAD позволяют решить большинство задач без использования программирования, однако имеется целый класс задач, для решения которых в

MathCAD используется панель программирования.

Создание программы. Программа в MathCAD состоит из названия программы, знака присваивания и идущих за ним выражений в правой части записанных в столбик и объединенных слева жирной вертикальной чертой.

Порядок создания программы:

1) ввести имя- выражение программы;

2) ввести оператор присваивания;

3) щелкнуть по кнопке addline на панели программирования столько раз, сколько строк будет содержать программа;

4) в появившееся место ввода ввести, справа от вертикальной черты, текст программы.

Условный оператор if. Условный оператор программирования IF действует в два этапа: сначала проверяется условие, записанное справа от него, и если оно "истинно", то выполняется выражение слева от него, а если ложно, то выполняется следующее за ним выражение.

При щелчке на операторе IF на панели программирования, кроме самого оператора IF, появляется два дополнительных места ввода. Правое предназначено для ввода условия, а левое – для выражения, когда условие принимает значение "истинно".Для ввода оператора "иначе" используется копка OTHERWISE.


1.10 Обработка экспериментальных данных

При обработке экспериментальных данных, как правило, возникает задача аппроксимации (приближение) результатов эксперимента аналитической зависимостью y=f(x), которую можно использовать в последующих расчетах. Существует три возможности аппроксимации опытных данных:

1) аппроксимирующая функция должна пройти через все опытные точки. Такой способ аппроксимации называется интерполяцией;

2) аппроксимирующая функция должна сглаживать(усреднять) опытные данные. Такой способ аппроксимации называется регрессией или сглаживанием;

3) аппроксимирующая функция должна отбрасывать систематическую погрешность (шумы, наложившиеся на экспериментальные данные). Такой способ аппроксимации называется сглаживанием с фильтрацией данных.

1.10.1 Интерполяция

Встроенные функции MathCAD позволяют при интерполяции проводить через экспериментальные точки кривые разной степени сложности.

Линейная интерполяция. При линейной интерполяции аппроксимирующая функция соединяет опытные точки отрезками прямых линий. Для проведения такой интерполяции используется функция linterp(x,y,t), где

x – вектор опытных значений аргумента;

y – вектор опытных значений функций;

t – значение аргумента, при котором вычисляется интерполирующее значение функции.

Кубическая сплайн-интерполяция. В большинстве случаев желательно соединять экспериментальные точки не ломаной линией, а гладкой линией, для чего используется сплайн-интерполяция.