где:
- P3 – сила, действующая на балку;
- d – диаметр балки
где:
- L4 – длины участка;
- ∆(xmax) –максимальный прогиб балки
5. Аппроксимация
Находим аппроксимирующую функцию для зависимости диаметра балки от P3. Для этого нам необходимо определить набор функций с помощью которых будем аппроксимировать. Воспользуемся встроенной функцией linfit для определения вектора коэффициентов аппроксимирующей функции. Построить график.
Аналогично для зависимости максимальный прогиб балки от L4
Определяем набор функций с помощью которых будем аппроксимировать
Определяем вектор коэффициентов аппроксимирующей функции
где:
- P3 – сила, действующая на балку;
- d – диаметр балки
-F3(аа)–аппроксимирующая функция
-(аа) –ранжированная переменная
Определяем набор функций с помощью которых будем аппроксимировать
Определяем вектор коэффициентов аппроксимирующей функции
где:
- L4 – длины участка;
- ∆(xmax) –максимальный прогиб балки
-F1(bb)–аппроксимирующая функция
-(bb) –ранжированная переменная
6. Вывод по проделанным исследованиям
В результате проделанных опытов в курсовой работе, была получена зависимость диаметра балки от силы P3, максимального прогиба балки от длины L4.
Построен график, где показано, что при увеличении силы P3 диаметр d балки уменьшается пропорционально.
На графике зависимости минимального прогиба балки ∆(xmax) от длинны L4 получили: на участке от 23 до 25 функция ведет себя логарифмически, на участке от 25 до 29 функция ведет себя линейно, в дальнейшем функция убывает линейно.
Найдены аппроксимирующие функции. Которые помогут нам найти аналитическую зависимость диаметра балки от P3 и максимального прогиба балки от L4.
Заключение
При разработке данной курсовой работы нам необходимо было изучить:математическое моделирование, его свойства, основные понятия, классификация, алгоритмический анализ задачи и описание исследования задачи в MathCAD.
Я научился работать с пакетом MathCAD, её приложениями и компонентами. Система MathCAD является популярной программой, где можно строить графики, решать сложные дифференциальные, линейные и интегральные уравнения. Таким образом, работа в среде MathCAD даёт значительное повышение точности в расчётах, облегчает процесс программирования при вычислении функций и даёт возможность создания различных документов.
Список литературы
1)Макаров Инженерные расчеты в MathCAD(c.295)
2)Дарков А.В.,Шпиро Г.С. Сопротивление материалов Москва 1989г.
3)Винокуров Е.Ф.,Балыкин М.К., Голубев И.А Справочник по сопротивлению материалов –Мн.:Наука и техника,1988-464с.(с21-23).
4) Токочаков В. И. Практическое пособие по теме "Решение систем алгебраических и дифференциальных уравнений в среде Mathcad для студентов всех специальностей дневного и заочного отделений. - Гомель: ГГТУ, 2000.
5) Яблонский А. А. Курс теоретической механики, ч.II.– М.,1966 г.
6) Тарасик В. П. Математическое моделирование технических систем:
Учебник для вузов. – Мн.: ДизайнПРО, 1997. – 640с.: ил..
7) Останина А.М. Применение математических методов и ВМ.Мн.:1985
Приложения 1
Постановка задачи.
Построение эпюр поперечной силы Q
Построение эпюр поперечной силы М
Нахождение экстремальных значений изгибающего момента
Определение размеров сечения балки
Определение перемещения балки
Прогиб балки
Нахождение экстремальных значений прогиба балки
Необходимые исследования зависимостей
Аппроксимация