Смекни!
smekni.com

Математическое моделирование технических объектов (стр. 1 из 4)

Содержание

Введение

1 Математическое моделирование технических объектов

1.1 Понятие математической модели

1.2. Понятие математических моделей, их классификация и свойства

1.3 Функции системы MathCAD

1.4 Переменные в MathCAD

1.5 Решение уравнений с использованием функции FIND, MINER

1.6 Исследование функций на экстремум

1.7 Графики в MathCAD

1.8 Учет размерности

1.9 Программирование в MathCAD

1.10 Обработка экспериментальных данных

1.10.1. Интерполяция

1.10.2 Функции регрессии

1.11 Интернет технологии

1.12 Описание Web-сайта

2 Алгоритмический анализ в задаче

2.1 Исходные данные задачи

2.2 Постановка задачи

2.2.1 Графическая схема алгоритма

2.2.2 Схема сайта

3 Описание документа MathCad

3.1 Система MathCad

3.2Таблица используемых переменных

4. Необходимые исследования зависимостей в MathCad

5. Аппроксимация

6 Вывод по проделанным исследованиям

Заключение

Список литературы

Приложения 1

Приложения


Введение

Изобретение и дальнейшее развитие персонального компьютера значительно упростило жизнь человека.

Технологический скачок последнего десятилетия позволило разработать серию современных персональных компьютеров. Микро ЭВМ постепенно начали входить в нашу повседневную жизнь. Компьютерные и информационные технологии уверенно входят в нашу жизнь.

Персональная ЭВМ давно превратилась в предмет труда. Ни одно предприятие не обходится без электронной базы данных, без современных средств коммуникаций, мощных вычислительных средств. Он позволяет осуществлять не только производственный процесс на дому, но и целый ряд всевозможных процессов.

Огромный вклад в этот рост внесло развитие технологии математического моделирование.

Моделировaние это изучение объектa путем построения и исследования его модели, осуществляемое с определенной целью и состоит в зaмене экспериментa с оригинaлом экспериментом нa модели.

Модель должна строится так, чтобы она наиболее полно воспроизводила те качества объекта, которые необходимо изучить в соответствии с поставленной целью. Во всех отношениях модель должна быть проще объекта и удобнее его для изучения. таким образом, для одного и того же объекта могут существовать различные модели, классы моделей, соответствующие различным целям его изучения.

Абстрактное моделирование связано с построением абстрактной модели. Такая модель представляет собой математические соотношения, графы, схемы, диаграммы и т.п. Наиболее мощным и универсальным методом абстрактного моделирования является математическое моделирование. Оно широко используется как в научных исследованиях, так и при проектировании.

Математических моделей позволяет осуществить предварительный выбор оптимальных или близких к ним вариантов решений по определенным критериям. Они научно обоснованы, и лицо, принимающее решение, может руководствоваться ими при выборе окончательного решения. Следует понимать, что не существует решений, оптимальных "вообще". Любое решение, полученное при расчете математической модели, оптимально по одному или нескольким критериям, предложенным постановщиком задачи и исследователем.

В курсовой работе я исследую математическую модель зависимости диаметра и максимального прогиба балки под действием внешних нагрузок. Математическая модель составляется в MathCad, где получатся графики зависимости силы и момента, и в результате анализ данной задачи.


1 Математическое моделирование технических объектов

1.1 Понятие математической модели

Моделирование представляет собой процесс замещение объекта исследования некоторой его моделью и проведение исследование на модели с целью получения необходимой информации об объекте.

Математическое моделирование позволяет посредствам математических символов и зависимостей составить описание функционирования технического объекта в окружающей внешней среде, определить выходные параметры и характеристики, получить оценку показателей эффективности качества, осуществить поиск оптимальной структуры и параметров объекта. Применение математического моделирования при проектировании в большинстве случаев позволяет отказаться от физического моделирования, значительно сократив объемы испытаний. Также математическим моделированием называют процесс формирования математической модели для анализа и синтеза. В качестве математических объектов выступают числа, переменные, множества, векторы, матрицы и так далее.

В конструкторской практике под математическим моделированием обычно понимается процесс построения математической модели.

1.2 Понятие математических моделей, их классификация и свойства

Модель – это физический или абстрактный образ моделируемого объекта, удобный для проведения исследований и позволяющий адекватно отображать интересующие исследователя физические свойства и характеристики объекта.

Математическая модель – это совокупность математических объектов и отношений между ними, адекватно отображающая физические свойства технического объекта.

На различных этапах и стадиях проектирования сложной технической системы используют различные математические модели. Математические модели могут представлять собой системы дифференциальных уравнений, системы алгебраических уравнений, простые алгебраические выражения, бинарные отношения, матрицы и так далее. Уравнение математической модели связывают физические величины.

К математическим моделям предъявляются требования адекватности, экономичности, универсальности. Модель считается адекватной, если отражаются исследуемые свойства с приемлемой точностью.

Математические модели технических объектов, используемые при проектировании, предназначены для анализа процессов функционирования объектов и оценки их выходных параметров. Они должны отражать физические свойства объектов, существенные для решения конкретных задач проектирования. При этом математическая модель должна быть как можно проще, но в то же время обеспечивать адекватное описание анализируемого процесса.

Используют следующие виды математических моделей: детерминированные и вероятностные, теоретические и экспериментальные факторные, линейные и не линейные, динамические и статистические, непрерывные и дискретные, функциональные и структурные.

По форме представления математических моделей различают:

1. Инвариантная модель – математическая модель представляющаяся системой уравнений (дифференциальных, алгебраических), вне свези с методом решения этих уравнений.

2. Алгебраическая модель – соотношение моделей связаны с выбранным численным методом решения и записаны в виде алгоритма (последовательности вычислений).

3. Аналитическая модель – представляет собой явные зависимости искомых переменных от заданных величин. Такие модели получают на основе физических законов, либо в результате прямого интегрирования исходных дифференциальных уравнений, используя табличные интегралы. К ним относятся также регрессионные модели, получаемые на основе результатов эксперимента.

4. Графическая модель – представляется в виде графиков, эквивалентных схем,

динамических моделей, диаграмм и тому подобное. Для использования графических моделей должно существовать правило однозначного соответствия условных изображений элементов графической и компонентов инвариантной математической модели.

Математические модели могут представлять собой функциональные зависимости между выходными, внутренними и внешними параметрами.

Деление математических моделей на функциональные и структурные определяется характером отображаемых свойств технического объекта.

Структурные модели отображают только структуру объектов и используются при решении задач структурного синтеза. Параметрами структурных моделей являются признаки функциональных или конструктивных элементов, из которых состоит технический объект и по которым один вариант структуры объекта отличается от другого. Такие модели имеют форму таблиц, матриц и графиков. Они наиболее широко используются на метоуровне при выборе технического объекта.

Функциональные модели описывают процессы функционирования технических объектов и имеют форму систем уравнений. Их широко используют на всех иерархических уровнях, стадиях и этапах при функциональном, конструкторском и технологическом проектировании.

По способам получения функциональные математические модели делятся на:

1. Теоретические модели – получают на основе описания физических процессов функционирования объекта.

2. Экспериментальные модели – получают на основе поведения объекта во внешней среде, рассматривая его как кибернетический "черный ящик".

При построении теоретических моделей используют физический и формальный подходы. Физический подход сводится к непосредственному применению физических законов для описания объектов. Формальный подход используется при построении как теоретические, так и экспериментальные модели.

Функциональные математические модели могут быть:

1. Линейные модели, содержащие только линейные функции фазовых переменных и их производных.

2. Нелинейные математические модели, включающие в себя нелинейные функции фазовых переменных и их производных.

Если при моделировании учитывается инерциальные свойства технического объекта и (или) изменение во времени параметров объекта или внешней среды, то модель называют динамической. В противном случаи модель статическая. Выбор динамической или

статической модели определяется режимом работы технического объекта. Математическое представление динамической модели в общем случаи может быть выражено системой дифференциальных уравнений, а статической – системой алгебраических уравнений. Динамическая модель может также представлять собой интегральные уравнения, придаточные функции, а в аналитической форме – явные зависимости фазовых координат или выходных параметров технического объекта от времени.