Смекни!
smekni.com

Математическое мышление младших школьников (стр. 6 из 10)

2.2 Использование различных способов решения нестандартных задач в развитии математического мышления младших школьников

Решение нестандартных задач составлением уравнения.

Для этого необходимо:

провести разбор задачи с целью выбора основного неизвестного и выявления зависимости между величинами, а также выражения этих зависимостей на математическом языке в форме двух алгебраических выражений;

найти основание для соединения этих выражений знаком «=»и составить уравнение;

найти решения полученного уравнения, организовать проверку решений уравнения.

Все эти этапы решения задачи логически связаны между собой. Например, о поисках основания для соединения двух алгебраических выражений знаком равенства мы упоминаем как об особом этапе, но ясно, что на предыдущем этапе указанные выражения образуются не произвольно, а с учётом возможности соединить их знаком «=».

Как выявление зависимостей между величинами, так и перевод этих зависимостей на математический язык требует напряжённой аналитико-синтетической мыслительной деятельности. Успех в этой деятельности зависит, в частности от того, знают ли учащиеся, в каких отношениях вообще могут находиться эти величины, и понимают ли они реальный смысл этих отношений (например, отношений, выраженных терминами «позже на…», «старше в…раз» и т.п.). Далее требуется понимание, каким именно математическим действием или, свойством действия или какой связью (зависимостью) между компонентами и результатом действия может быть описано то или иное конкретное отношение.

Приведём пример оформления записи разбора нестандартной задачи, решаемой составлением уравнения.

Задача. Рыбак поймал рыбу. Когда у него спросили: «Какова её масса?», он ответил: «Масса хвоста – 1кг, масса головы такая же, как масса хвоста и половины туловища. А масса туловища такая, как масса головы и хвоста вместе». Какова масса рыбы?

х кг – масса туловища;

(1+1/2х) кг – масса головы;

Так как по условию масса туловища равна сумме масс головы и хвоста, составляем уравнение:

Х=1+1/2х+1

Х – 1/2х=2

Х/2=2

Х=4

4 кг – масса туловища;

1+1/2*4=3 (кг) – масса головы;

3+4+1=8 (кг) – масса всей рыбы;

Ответ: 8 кг.

Численное решение нестандартных задач можно получить графическим способом. Этот метод нагляден и достаточно прост. Рассмотрим методику его проведения на конкретном примере.

Задача. У двух рыбаков спросили: «Сколько рыбы в ваших корзинах?»

«В моей корзине половина того, что в корзине у него, да ещё 10», - ответил первый.

«А у меня в корзине столько, сколько у него, да ещё 20», - подсчитал второй.

Я сосчитал, а теперь посчитайте вы.

Решение:

Сколько рыбы в корзине первого рыбака? Как обозначим это условие на чертеже?

Отметим на чертеже, сколько рыбы было у 2 рыбака.

Можем ли мы узнать, сколько рыбы составляет половину корзины 2 рыбака? Откуда это следует?

Сколько всего было рыбы у 2 рыбака? А сколько у 1 рыбака?

Способы решения комбинаторных задач.

Включение комбинаторных задач в начальный курс математики оказывает положительное влияние на развитие младших школьников. «Целенаправленное обучение решению комбинаторных задач способствует развитию такого качества математического мышления, как вариативность. Под вариативностью мышления мы понимаем направленность мыслительной деятельности ученика на поиск различных решений задачи в случае, когда нет специальных указаний на это».

Комбинаторные задачи можно решать различными методами. Условно эти методы можно разделить на «формальные» и «неформальные». При «формальном» методе решения нужно определить характер выбора, выбрать соответствующую формулу или комбинаторное правило (существуют правила суммы и произведения), подставить числа и вычислить результат. Результат – это количество возможных вариантов, сами же варианты в этом случае не образовываются.

При «неформальном» же методе решения на первый план выходит сам процесс составления различных вариантов… И главное уже не сколько, а какие варианты могут получиться. К таким методам относится метод перебора. Этот метод не только доступен младшим школьникам, но и позволяет накапливать опыт практического решения комбинаторных задач, что служит основой для введения в дальнейшем комбинаторных принципов и формул. Кроме того, в жизни человеку приходится не только определять число возможных вариантов, но и непосредственно составлять все эти варианты, а, владея приёмами систематического перебора, это можно сделать более рационально.

Задачи по сложности осуществления перебора делятся на три группы:

Задачи, в которых нужно произвести полный перебор всех возможных вариантов.

Задачи, в которых использовать приём полного перебора не целесообразно и нужно сразу исключить некоторые варианты, не рассматривая их (то есть осуществить сокращённый перебор).

Задачи, в которых операция перебора производится несколько раз и по отношению к разного рода объектам.

Приведём соответствующие примеры задач:

Расставляя знаки «+» и « - « между данными числами 9…2…4, составь все возможные выражения.

Проводится полный перебор вариантов:

два знака в выражении могут быть одинаковыми, тогда получаем 9+2+4, 9-2-4;

два знака могут быть разными, тогда получаем 9+2-4, 9-2+4.

Учитель говорит, что он нарисовал в ряд 4 фигуры: большой и маленький квадраты, большой и маленький круги так, что на первом месте находится круг и одинаковые по форме фигуры не стоят рядом, и предлагает ученикам отгадать, в какой последовательности расставлены эти фигуры.

Всего существует 24 различных расположения этих фигур. И составлять их все, а потом выбирать соответствующие данному условию не целесообразно, поэтому проводится сокращённый перебор.

На первом месте может стоять большой круг, тогда маленький может быть только на третьем месте, при этом большой и маленький квадраты можно поставить двумя способами – на второе и четвёртое место.

Аналогичное рассуждение проводится, если на первом месте стоит маленький круг, и также составляются два варианта.

Три компаньона одной фирмы хранят ценные бумаги в сейфе, на котором 3 замка. Компаньоны хотят распределить между собой ключи от замков так, чтобы сейф мог открываться только в присутствии хотя бы двух компаньонов, но не одного. Как это можно сделать?

Сначала перебираются все возможные случаи распределения ключей. Каждому компаньону можно дать по одному ключу или по два разных ключа, или по три.

Предположим, что у каждого компаньона по три разных ключа. Тогда сейф сможет открыть один компаньон, а это не соответствует условию.

Предположим, что у каждого компаньона по одному ключу. Тогда, если придут двое из них, то они не смогут открыть сейф.

Дадим каждому компаньону по два разных ключа. Первому – 1 и 2 ключи, второму – 1 и 3 ключи, третьему – 2 и 3 ключи. Проверим, когда придут любые два компаньона, смогут ли они открыть сейф.

Могут прийти первый и второй компаньоны, у них будут все ключи (1 и 2, 1 и 3). Могут прийти первый и третий компаньоны, у них также будут все ключи (1 и 2, 2 и 3). Наконец, могут прийти второй и третий компаньоны, у них тоже будут все ключи (1 и 3, 2 и 3).

Таким образом, чтобы найти ответ в этой задаче, нужно выполнить операцию перебора несколько раз.

«При отборе комбинаторных задач нужно обращать внимание на тематику и форму представления этих задач. Мы старались, чтобы задачи не выглядели искусственным, а были понятны и интересны детям, вызывали у них положительные эмоции. Желательно, для составления задач использовать практический материал из жизни».

Способы решения математических софизмов.

Софизм – доказательство ложного утверждения, причём ошибка в доказательстве искусно замаскировано. Софизм в переводе с греческого означает хитроумную выдумку, ухищрение, головоломку.

Ошибки, допущенные в софизме обычно сводятся к следующим: выполнению «запрещённых» действий, использованию ошибочных чертежей, неверному словоупотреблению, неточности формулировок, «незаконным» обобщениям, неправильным применениям теорем.

Раскрыть софизм – это, значит, указать ошибку в рассуждении, основываясь на которой была создана внешняя видимость доказательства.

Разбор софизмов, прежде всего, развивает логическое мышление, прививает навыки правильного мышления.

Обнаружить ошибку в софизме – это, значит, осознать её, а осознание ошибки предупреждает от повторения её в других математических рассуждениях.

Помимо критичности математического мышления этот вид нестандартных задач выявляет гибкость мышления. Сумеет ли ученик «вырваться из тисков» этого строго логичного на первый взгляд пути, разорвать цепь умозаключений в том самом звене, которое является ошибочным и делает ошибочным все дальнейшие рассуждения?

Разбор софизмов помогает также сознательному усвоению изучаемого материала, развивает наблюдательность и критическое отношение к тому, что изучается.

Вот, к примеру, софизм с неправильным применением теоремы.

Докажем, что 2*2=5.

Возьмём в качестве исходного соотношения следующее очевидное равенство:

4:4=5:5 (1)

Перепишем его в таком виде:

1*(1:1)=5*(1:1) (2)

Числа в скобках равны, значит, 4=5 или 2*2=5.

Решение: в рассуждении при переходе от равенства (1) к равенству (2) создана иллюзия правдоподобия на основе ложной аналогии с распределительным свойством умножения относительно сложения.

Или другой софизм с использованием «незаконных» обобщения.

Имеются две семьи – Ивановых и Петровых. Каждая состоит из 3 человек – отца, матери и сына. Отец Иванов не знает отца Петрова. Мать Иванова не знает матери Петровой. Единственный сын Ивановых не знает единственного сына Петровых. Вывод: ни один член семьи Ивановых не знает ни одного члена семьи Петровых. Верно ли это?

Решение: если член семьи Ивановых не знает равного себе по семейному статусу члена семьи Петровых, то это не значит, что он не знает всю семью. Например, отец Иванов может знать мать и сына Петровых (как заметил ученик экспериментального класса Морозов Саша).