Смекни!
smekni.com

Математична обробка результатів вимірів (стр. 9 из 11)

Привеликійкількостівиміріввідповідномаємо

При великій кількості вимірів маємо:

2. Критерій Колмогорова

Це найбільш простий критерій перевірки гіпотези про нормальний закон розподілу. Використовується різниця D між статистичною інтегральною функцією розподілу

(z) і відповідною теоретичною функцією розподілу F(z).

При невеликій кількості вимірів

для статистичного розрахунку обчислюють: середнє арифметичне
, відхилення
, за формулою Бесселя середню квадратичну похибку m. Далі обчислюють нормовані похибки
і складають зростаючий ряд Zmin, Z1, Z2, … Zmax.

3. Критерій x2 (Пірсона)

В математичній статистиці його вважають найбільш строгим і надійним критерієм погодження нульових гіпотез. Він забезпечує мінімальну ймовірність виникнення похибок 2-го роду.

Розрахунки в критерії Пірсона аналогічні критерію Колмогорова і пов'язані з групуванням нормованих похибок. Слід пам'ятати, що при групуванні похибок в кожному інтервалі їх повинно бути не менше п'яти. Тому крайні інтервали можна штучно об'єднувати (збільшувати). Число інтервалів повинно бути не менше чотирьох.

Критерієм перевірки нульової гіпотези є статистика

,

де N= [vi] - числовсіхвимірів, pi - теоретичнезначенняймовірностівибранихінтерваліввибираєтьсяізтаблиць.

В критерії Пірсона доведено, що при нормальному розподілі похибок вимірів статистика X2 має X2 -розподіл з числом ступенів вільностіk = n – 1.

Критична область для нульової гіпотези буде

де %д - вибирається із таблиць дод. 9 за заданими д\ і г = & — З, &- кількість інтервалів.

2. Розподіл імовірностей випадкових похибок

Результати вимірів е випадковими оскільки передбачити їх величину неможливо. Тоді і їх похибки будуть випадковими і для них можна вказати лише межу, в яких вони змінюються згідно з першою властивістю.

Неперервні випадкові похибки можна характеризувати законом розподілу, як об'єктивно існуючим зв'язком між випадковими величинами і їх імовірностями.

При багаторазових випробуваннях закон розподілу ряду істинних випадкових похибок можна характеризувати функціями:

1. Інтегральною функцією розподілу

(
)

2. Функцією щільності

де

- приріст випадкової похибки
.

Звернемося до постулату Гаусса, згідно з яким найбільш імовірним значенням шуканої величини є середнє арифметичне Із результатів повторних вимірювань. Скористаємося теоремою:

Якщо випадкові похибки відповідають постулату Гаусса, то законом розподілу випадкових похибок буде нормальний закон. В методі максимальної правдоподібності Фішера також доведено, що для нормального закону розподілу випадкових величин оцінкою параметра

є середнє арифметичне.

Функція щільності нормального розподілу випадкових похибок визначиться за формулою

Для нормованих похибок

отримаємо

3. Числові характеристики рівноточних вимірів

Рівноточними, називають виміри, дисперсії яких рівні між собою, тобто

. Тому рівноточні виміри можна виразити статистичнимрядом

(
)

Якщо невідоме істинне значення вимірюваної величини Х, то необхідно знайти значення близьке до істинного. Його називають дійсним, або ймовірним значенням виміряної величини. Воно може бути прийнятим, коли точність вимірів задовольняє поставленим вимогам, або - відхилене. Тому постає задача обчислення за результатами вимірів показників як розміру шуканої величини, так і її точності, їх називають числовими характеристиками. В теорії похибок вимірів до числових характеристик відносять:

1. Середнє арифметичне

Використаємо ряд вимірів. Якщо відоме істинне значення вимірюваної величини X, то визначимо ряд істинних похибок

Складемо їх і поділимо на n

За четвертою властивістю компенсації випадкових похибок

ліва

частина формули наближається до нуля при

. Позначимо середнє арифметичне

Тоді отримаємо ймовірне співвідношення

Принцип арифметичного середнього показує, що при нескінченній кількості вимірів і відсутності систематичних похибок просте арифметичне середнє наближається до істинного значення.

Це означає, що середнє арифметичне X буде найбільш точним, або ймовірніш значенням виміряної величини.

Як виміри, так і похибки вимірів при дотриманні "комплексу умов" належать нормальному закону розподілу. Тоді і за методом ММП Фішера доведено, що середнє арифметичне буде найбільш близьким до істинного.

Практично число вимірів обмежене, тому і обчислене середнє арифметичне буде випадковою величиною, яка може приймати значення в деякому інтервалі, який залежить від числа вимірів та прийнятої довірчої ймовірності.

2. Середня квадратична похибка окремого виміру

Теоретично мірою точності вимірів є дисперсія

. За результатами статистичної обробки рядів вимірів визначають емпіричну (або статистичну) дисперсію m2

За ММП Фішера доведено, що коли статистичний ряд, підкоряється нормальному закону розподілу, ефективною точності є дисперсія

Оскільки розмірність дисперсії ("в квадраті"), то за міру точності приймають емпіричний стандарт або середню квадратичну похибку

де

- істинні похибки.

Її називають похибкою Гаусса.

Якщо невідоме істинне значення вимірювальної величини, то використовуємо різниці

,

де

- систематична похибка.

Коли число вимірів дорівнює n, із формули отримаємо:

,

Зведемо вираз до квадрату і підсумуємо

Якщо в формулі взяти суму ймовірних похибок V, отримаємо:

Оскільки середнє арифметичне за формулою дорівнює

, то в формулі отримаємо:

або

Формула використовується і для контролю обчислення ймовірних похибок V.

Тоді формула зведеться до вигляду

Істинна похибка

простої арифметичної середини обчислюється за формулою:

або
.

Згідно з четвертою властивістю випадкових похибок

з врахуванням попередніх формул отримаємо

Остаточно отримаємо формулу Бесселя для визначення середньої квадратичної похибки виміру за ймовірними похибками