Смекни!
smekni.com

Матрицы. Дифференциальные уравнения (стр. 1 из 4)

ВЕКТОРЫ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Определение. Вектором называется направленный отрезок прямой. Точка

называется началом вектора
, а точка
– его концом (рис. 1).

Обозначения:

,
.

Определение. Длина вектора называется его модулем и обозначается

,
.

Определение. Координатами вектора

называются координаты его конечной точки. На плоскостиOxy
; в пространствеOxyz
.

Определение. Суммой и разностью векторов

и

являются соответственно векторы

;

;

произведение вектора

на число l есть вектор

.

Определение. Длина вектора равна корню квадратному из суммы квадратов его координат:

(на плоскости);

(в пространстве).

Определение. Расстояние d между двумя точками A и Bможно рассматривать как длину вектора

, т.е.

(на плоскости);

(в пространстве).

Определение. Если два вектора

и

перпендикулярны, то

(на плоскости);

(в пространстве).

Определение Вектор Xназывается собственным вектором линейного оператора A(матрицы A), если найдется такое число l, что AX=lX.

Число l называется собственным значением оператора A, заданного матрицей A, т.е. собственные значения находятся из характеристического уравнения

.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Определение Обыкновенное дифференциальное уравнение – уравнение, связывающее искомую функцию одной переменной и производные различных порядков данной функции.

Определение Порядок старшей производной – порядок дифференциального уравнения.

Определение Решение дифференциального уравнения – такая функция y=y(x), которая при подстановке ее в это уравнение обращает его в тождество.

Определение Задача нахождения решения дифференциального уравнения называется задачей интегрирования данного дифференциального уравнения.

Определение Общее решение дифференциального уравнения n- го порядка называется такое его решение

, которое является функцией переменной x и n постоянных. Частное решение при конкретных значениях
.

Определение Дифференциальное уравнение первого порядка называется уравнением с разделяющимися переменными, если оно может быть представлено в виде

.

Определение Д.у. первого порядка называется однородным, если оно может быть представлено в виде

.

(Для решения используется замена t=y/x)/

Определение Дифференциальное уравнение первого порядка называется линейным, если оно имеет вид

(линейное неоднородное).

(Сначала решаем уравнение

- линейное однородное, находим y и подставляем в исходное).

Определение Уравнение вида

называется уравнением Бернулли.

(Для решения используется замена

).

Линейные однородное д.у. второго порядка с постоянными коэффициентами

ОпределениеЛинейные однородные д.у. второго порядка с постоянными коэффициентами имеет вид

=0

(Для решения этого уравнения составляем характеристическое уравнение

).

Теорема 1) Пусть характеристическое уравнение имеет действительные корни l1 и l2, причем

. Тогда общее решение уравнения имеет вид

(С1, С2 – некоторые числа).

2) Если характеристическое уравнение имеет один корень l (кратности 2),то общее решение имеет вид

(С1, С2 – некоторые числа).

3) Если характеристическое уравнение не имеет действительных корней, то общее решение имеет вид

, где

, С1, С2 – некоторые числа.

НЕОБХОДИМЫЕ ФОРМУЛЫ ДЛЯ РЕШЕНИЯ ЗАДАЧ О КАСАТЕЛЬНОЙ

Общее уравнение прямой:

Ax+By+C=0

Уравнение прямой с угловым коэффициентом:

y=kx+b

(k=tgj коэффициент прямой равен тангенсу угла наклона этой прямой)

Если две прямые y=k1x+b1 и y=k2+b2 параллельны, то k1=k2.

Если две прямые y=k1x+b1 и y=k2+b2 перпендикулярны, то k1*k2=-1.

Уравнение прямой, проходящей через данную точку в данном направлении(известен коэффициент k):

Пусть прямая проходит через точку M1(x1;y1) и образует с осью Ox угол

y-y1=k(x-x1)

Уравнение прямой, проходящей через две данные точки M1(x1;y1) и M2(x2;y2):

Уравнение касательной к кривой y=f(x) в точке x0 примет вид

y-f(x0)=f¢(x0)(x-x0)

Геометрический смысл производной:

f¢(x0)=k=tga

(производная f¢(x0) есть угловой коэффициент(тангенс угла наклона) касательной, проведенной к кривой y=f(x) в точке x0)

МАТРИЦЫ

Определение: Матрицей размера m

n называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрица размера m

n:

.

Виды матриц

Определение: Матрица, состоящая из одной строки, называется матрицей (вектором)-строкой, а из одного столбца – матрицей (вектором)- столбцом.

Пример:

;

.