Задача о пищевом рационе.
Пусть имеется 4 вида продуктов:
. Стоимость единицы каждого продукта . Согласно этим условиям, требуется составить пищевой рацион, в котором должны содержаться белки, в количестве не менее единиц, углеводов – не менее единиц, жиров – не менее единиц.Составим таблицу.
продукт | элементы | продукт | элементы | ||||
Белки | углеводы | Жиры | Белки | углеводы | Жиры | ||
2.4 Математический аппарат теории игр и его применение к решению прикладных задач
Транспортная задача. Подобная задача возникает в своем простейшем варианте, когда речь идет о рациональной перевозке некоторого однородного продукта от производителей к потребителю. Поэтому здесь естественно возникает задача о наиболее рациональном прикреплении транспорта, правильном направлении перевозок груза, при котором полностью удовлетворяются потребности при минимальных затратах на транспортировку. Итак, задача формулируется следующим образом.
Имеется m пунктов производства с объемами производства в единицу времени аi, i= и n пунктов потребления bi, i= , естественно, что потребление не должно превышать возможностей производства ai bi, затраты на перевозку единицы продукции из i-го пункта производства в j-й пункт потребления составляют Сij, а количество перевезенного продукта xij.
Требуется составить такой план перевозок, при котором суммарные затраты на них были бы минимальны min
Cijxij при условиях, что в каждый пункт потребления завозится требуемое количество продукта xij bj, j = , из каждого пункта производства вывозится не более произведенного количества продукта xij ai, = и перевозимый объем продукта не может быть отрицательным xij 0, i= , j= .Рассмотрим далее транспортную задачу в частной постановке.
На двух станциях отправления
и сосредоточено соответственно и единиц некоторого однородного груза. Этот груз следует доставить в три пункта назначения , , , причём в каждый из них должно быть завезено соответственно , , единиц этого груза. Стоимость перевозки единицы груза из пункта в пункт (равную ), считаем заданной. Все данные полезно представить в виде таблицы 2.2.Таблица 2.2
Пункты назначенияПункты отправления | Пункты назначения | Запасы груза | ||
Потребность в грузе |
Естественно считать, что общий запас грузов на станциях отправления равен суммарной потребности в этом грузе всех станций назначения. Следовательно