Смекни!
smekni.com

Матричные антагонистические игры с нулевой суммой в чистых стратегиях (стр. 16 из 16)

Любую задачу линейного программирования можно свести к ОЗЛП (основной задаче линейного программирования). Основной принцип данной задачи таков: найти такие неотрицательные значения переменных

, которые удовлетворяли условиям – равенствам

и обращали бы в максимум линейную функцию этих переменных:

. Если функцию Lтребуется обратить в минимум, то для этого нужно изменить знак этой функции (т.е. максимизировать не L, а
). Рассмотрим конкретный пример, объясняющий эту позицию.

Пример. Пусть требуется найти неотрицательные значения переменных

, удовлетворяющих ограничениям – неравенствам
и обращающие в максимум линейную функцию
. Приведём условия в фигурной скобке к стандартному виду. Получим
(1). А теперь обозначим левые части неравенств через y1 и y2 =>
(2). Из условий (1) и (2) следует что переменные y1 и y2 тоже должны быть неотрицательными.

Выводы

1 Представлены основные понятия теории игр и исследования операций.

2 Приведены примеры игр в чистой и смешанной стратегиях (задача Борьба двух предприятий за рынок продукции региона»).

3 Представлена основная теорема Теории игр (с доказательством) и использован принцип сведения теоретико-игровой модели к ЗЛП (задаче линейного программирования)

4 В работе приведена серия задач, связанных с теорией игр и исследованием операций (в частности – основная задача линейного программирования).

5 Раскрыто современное понятие «Принятие решений» на основе математических методов и моделей Теории игр

ЛИТЕРАТУРА

1. Борисова С.П., Власова И.А., Коваленко А.Г. Теория игр и исследование операций – Издательство «Самарский университет», 2006.

2. Берж Л. Общая теория игр нескольких лиц – М.: ГИФМЛ, 1961. 327.стр.

3. Барсов А.С. Линейное программирование в технико-экономических задачах. М.: Наука, 1964. – 278 с.

4. Воробьёв Н.Н. Матричные игры – М.: Физматгиз, 1961.

5. Власов Д.А., Монахов Н.В., Монахов В.М. Математические модели и методы внутримодельных исследований – Издательство «Альфа», 2007.

6. Вентцель Е.С. Исследование операций. Задачи, принципы, методология – М.: Дрофа, 2006. 208 страниц.

7. Гасс С. Линейное программирование (методы и приложения) – М., 1961.

8. Гамецкий А.Ф., Слободенюк В.А., Спиридонова Г.В. Теория игр, исследование операций – Издательство КГУ, 1987.

9. Громенко Г.Н. Теория игр – М.: Издательство МГОУ, 2005. 198 стр.

10. Дюбин Г.Н., Суздаль В.Г. Введение в прикладную теорию игр – М.: Наука, 1989. 310 стр.

12. Давыдов Э.Г. Исследование операций: учебное пособие – М., 1990.

13. Зайченко Ю.П. Исследование операций – Киев, 1979. 278 стр.

14. Краснов М.Л., Киселёв А.И. Высшая математика, том 5 – М.: Издательство ЛКИ, 2007. 300 стр.

15. Конюховский П.В. Математические методы исследования операций в экономике - СПб.: Издательство СПбГУ. 394 стр.

16. Карлин С. Математические методы в теории игр, программировании и экономике – М., 1964. 400 стр.

17. Льюис Р.Д., Райфа Г. Игры и решения. – М.: ИЛ, 1961 285 стр.

18. Лагунов В.Н. Игры преследования и введение в теорию игр. Т., 1993

19. Мак-Кинси Дж. Введение в теорию игр. – М.: Физматгиз, 1960.

20. Малыхин В.И.. Статкус А.В. Теория принятия решений. МИУ, М., 1989. 382 стр.

21. Мулен Э Теория игр с примерами из математической экономики - М.: Мир 1985.

22. Нейман Дж. Фон, Моргенштерн О. Теория игр и экономическое поведение – М.: Издательство «Наука», 2007. 420 стр.

23. Нестеров Е.П. Транспортные задачи линейного программирования – М.: Транспорт 1971. 216 стр.

24. Оуэн Г. Теория игр - М.: Издательство ЛКИ, 2007. 232 стр.

25. Петросян Л.А. Теория игр – М.: Издательство «Высшая школа», 1998.

26. Протасов И.Д. Теория игр и исследование операций – М.: Издательство «Гелиос» АРВ, 2006. 368 страниц.

27. Парфёнов Г.Н. Принципы теории игр – Издательство СПбГУ, 2001.

28. Секацкий В.В., Худякова Г.И. Элементы теории матричных игр в курсе математики.// Ярославский педагогический вестник. 2000, №1(23).

29. Терехов Л.Л. Применение математических методов в экономике – М.: Статистика, 1968. 188 стр.

30. Таха Х. Введение в исследование операций – М.: издательство «Вильямс», 2001.

31. Фатхутдинов Р.А. Управленческие решения – М.: нфра 2007.

32. Хорн Р., Джонсон Ч. Матричный анализ – М.: Мир, 1989. 427 стр.

33. Хазанова Л.Э. Математические методы в экономике – М.: издательство БЕК, 2002. 144 стр.

34. Шикин Е.В. От игр к играм – М.: УРСС, 1997. 149 стр.

35. Юдин Д.Б., Гольштейн Е.Г. Линейное программирование. Теория, методы, приложения – М.: «Наука», 1969. 364 стр.

36. Яновская Е.Б. Антагонистические игры // Проблемы кибернетики. – М.: Наука, 1978. С. 221 – 246.