Смекни!
smekni.com

Метод Винера-Хопфа и его приложения в физических задачах (стр. 2 из 3)

Как видим, мы имеем дело с ядром вида exp(-|x|).Найдем его Фурье-образ, и далее, функцию L(k):

- является аналитической в области -1 < Im(k) < 1. Разложим ее как частное двух так:

При 0 < λ < 0.5 условия одновременной аналитичности выполняются в полосе µ < Im(k) < 1, при λ > 0.5 условия выполняются в полосе 0 < Im(k) < 1. Эти выводы получаются из изучения особых точек функций L+(k),L-(k). Далее – обе функции растут на бесконечности к по модулю не быстрее многочленов первой степени. Наш полином в числителе – это константа, полином нулевой степени, иначе не выполняется условие сходимости произведения L+U+ ,L-U- .Значит

,

и, применяя обратное преобразование Фурье, находим u+(x):

,

что верно для

Решение в квадратурах найдено, этот интеграл подлежит простому подсчету. На выходе получим:

Как видим, решение получено с точностью до константы.

1.3 В общем виде

Изложим метод Винера-Хопфа в общем виде. Возьмем обобщенное уравнение

и поставим задачу: найти функции Ψ1, Ψ2,удовлетворяющие нашему уравнению в полосе

,стремящихся к нулю при
.A,B,C – аналитические в нашей полосе функции, для ограничения вырожденного случая A,B не равны в полосе нулю. Идею решения такого уравнения мы в основном уже излагали, здесь она немного расширена. Итак, представляем A/B как частное функций L+ ,L- ,

,

причем L+ аналитическая в области Im(k) > τ-, L- аналитическая в области Im(k) < τ+ .Подставляя это в уравнение, и приводя к общему знаменателю, получаем:

Теперь, если удается разбить слагаемое, не содержащее Ψ,на два, как

,

что будет верно в некоторой подполосе нашей полосы, и сгруппировать идентичные слагаемые, то получаем:

- это чуть более общее равенство, чем то, что мы получали ранее для частного случая. Как и ранее – из сходимости обоих пси к нулю при стремлении k по модулю к бесконечности, сходимости L+ L- не быстрее многочлена степени n, а также учитывая, что существует единственная пси в нашей полосе, составленная из Ψ1, Ψ2, мы получаем следующие соотношения:

Рn(k) – многочлен, коэффициенты которого определяются из доп.условий. Далее – решение будет равно обратному преобразованию Фурье от суммы Ψ1, Ψ2.

Что осталось выяснить, так это саму возможность так раскладывать функции. Приведем нескольку лемм, обосновывающих возможность такой работы с нашими функциями.

Лемма1: Пусть образ F(k) аналитический в полосе

,F(k) равномерно стремится к 0 при |k|-> ∞ Тогда в этой полосе возможно разбиение функции F как
,F+(k) аналитическая в Im(k)>τ- , F-(k) аналитическая в Im(k)<τ+ .

Доказательство: Рассмотрим систему отсчета так, как это изображено на картинке. Посчитаем значение F(k0) – в точке, лежащей внутри прямоугольного контура abcd.По формуле Коши расписали в интеграл по контуру.Перейдем к пределу A ->∞,и устремим контур к полосе.

Тогда в пределе получаем

,

где эти части есть

Каждая функция задана в своей области, а на их пересечении в нашей полосе мы имеем равенство. Что и требовалось доказать, в общем то. Очевидно, что из их сходимости следует и ограниченность F+(k),F-(k) в рассматриваемой полосе.

Лемма2:Пусть функция Ф(k) является аналитической и не равной нулю в полосе

,причем Ф(k) равномерно стремится к 1 при |k|->∞.Тогда
,где функции Ф+- соответственно аналитические в

и

Доказательство:

Заметим, что для функции

выполнены условия леммы1,значит,мы имеем право ее представить суммой F+ , F- , а Ф – произведением:

,Ф=Ф+- .

Условия на границы по мнимой оси для функций Ф+- сохранятся => лемма доказана.

Теперь сделаем еще одно обобщение – покажем, как в общих чертах работает этот метод для неоднородного уравнения

(7)

Проводя аналогичные рассуждения, разбивая u(x) на две вспомогательные функции, замечаем, что при выполнении условий для модуля

в полосе

мы можем переходить к образам функций и мы получим

предварительно разбив F на две. Принимая за функцию L(x) ф-ю

,

аналитическую в стандартной полосе

и равномерно стремящуюся к 1 при
наше алгебраическое уравнение перепишется как

Далее, точно также разделяем L на две части как

,

И L+ - аналитическая в

, L- - аналитическая в
. По аналогии приводя к общему знаменателю, получаем уравнение на U+,U- :

При успешном разложении последнего члена как

,

где по все той же аналогии D+ и D- аналитические в областях

соответственно, мы записываем решения в виде

.

При этом мы воспользовались той же сходимостью – L+,L- растут не быстрее чем kn, а значит, для выполнения условий необходим полином в числителе.

Как видим, и эта, неоднородная задача, успешно решилась методом Винера-Хопфа. Как таковой, метод основан на некой аналогии разделения переменных – мы разделяем одну функцию на сумму двух, каждая из которых закрывает свою зону комплексной плоскости, и с каждой половиной работаем отдельно.

Метод мы рассмотрели, поняли, как он работает, теперь рассмотрим его конкретное применение – в краевых задачах математической физики.

2. Применение метода Винера-Хопфа

До этого мы рассматривали наш метод для решения интегральных уравнений, однородных и неоднородных, с специальным ядром. Сейчас же рассмотрим уравнение Лапласа и краевую задачу на нем, тем самым обобщив м. В.-Х. и на дифференциальные уравнения в частных производных.

Итак, задача: в верхней полуплоскости найти гармоническую функцию, удовлетворяющую следующим условиям:

Для этого решим к. задачу на уравнении

,
,и перейдем уже в решении к пределу в нуле по каппа.

Разделяя переменные, и применяя метод Фурье, в общем виде находим решение:

,

где f(k) - произвольная функция комплексного параметра k,