т.е.
Докажем коллинеарность векторов
Из (20) и (29) имеем:
а это и доказывает коллинеарность векторов (36).
Вектор
Это и доказывает справедливость (34) при всех i.
На первый взгляд кажется, что первый алгоритм лучше, так как на каждом шаге он требует лишь одного умножения матрицы А на вектор
Метод сопряженных градиентов целесообразно использовать для решения систем уравнений, в которых матрица А имеет много нулевых элементов. При решении системы по этому методу элементы матрицы участвуют в арифметических операциях лишь при умножении матрицы на вектор, а умножение матрицы на вектор можно организовать так, чтобы в арифметических операциях участвовали только ненулевые элементы.
Заключение
В данной работе были рассмотрены метод ортогонализации и метод сопряженных градиентов, а также представлена программа на языке программирования С++, реализующая метод ортогонализации на ЭВМ, и ее результаты работы.
Список литературы
1. Березин И.С. и Жидков Н.П. Методы вычислений. т. 1. М.: «Наука», 1965. 633c.
2. Воеводин В.В. Численные методы алгебры (теория и алгоритмы). М.: «Наука», 1966.
3. Подбельский В.В. и Фомин С.С. Программирование на языке Си. М.: «Финансы и статистика», 2000. 599 с.
4. Калиткин Н.Н. Численные методы. М.: «Наука», 1978. 512 с.