Тоді, як відомо, оцінки МНК є найкращими лінійними оцінками, тобто спроможними і незміщеними оцінками, які являють собою лінійні функції результатів спостережень і мають мінімальні дисперсії серед безлічі всіх лінійних незміщених оцінок. Далі саме цей найбільше практично важливий окремий випадок розглянемо більш докладно.
Запишемо істині дані в наступній формі:
де R - індекс, що вказує на те, що значення істинне. Істині і обмірювані дані пов’язані таким чином:
де
Припустимо, що похибки виміру відповідають граничним умовам
Нехай безліч W можливих значень
Тоді
Введемо поняття нотни.
Означення: Величину максимально можливого (по абсолютній величині) відхилення, викликаного похибками спостережень
Nf(x) = sup | f(y) - f(x) |,
де супремум береться по безлічі можливих значень вектора похибки
Якщо функція f має частинні похідні другого порядку, а обмеження на похибку мають вигляд
причому
Щоб одержати асимптотичний (при
а мінімум, що відрізняється від максимуму тільки знаком, досягається при . Отже, нотна з точністю до нескінченно малих більше високого
порядку має вигляд
Цей вираз назвемо асимптотичною нотною.
Покладемо:
Будемо називати n(1) нижньою нотною, а n(2) верхньою нотною.
Припустимо, що при безмежному зростанні числа вимірів n, тобто при
Розглянемо довірчу множину
З визначення верхньої й нижньої нотни треба, щоб завжди
Відповідно до визначення нижньої асимптотичної нотни й верхньої асимптотичної нотни можна вважати, що
Розіб'ємо P на L гіперпаралелепіпедів. Нехай
де
Таким чином, безліч C характеризує невизначеність при оцінюванні вектора . Його можна назвати довірчою множиною в статистиці інтервальних даних.
Введемо деяку міру М(X), що характеризує "величину" множини
Прикладом такої міри є площа для r = 2 і об’єма для r = 3. Тоді:
М(C) = М(P) + М(F), (3.1.6)
де F = C \ P. Тут М(F) характеризує міру статистичної невизначеності, у більшості випадків вона спадає при збільшенні числа досвідів n. У той же час М(P) характеризує міру інтервальної невизначеності, і, як правило, М(P) прагне до деякої постійної величини при збільшенні числа досвідів n. Нехай тепер потрібно знайти те число досвідів, при якому статистична невизначеність становить δ-ю частина загальної невизначеності, тобто
М(F) = δ М(C), (4.1.7)
де δ < 1. Тоді, підставивши співвідношення (4.1.7) у рівність (4.1. 6) і вирішивши рівняння відносно n, одержимо шукане число досвідів. В асимптотичній математичній статистиці інтервальних даних воно називається "раціональним обсягом вибірки".
3.2 Метод найменших квадратів для лінійної моделі
Розглянемо найбільш важливий для практики окремий випадок МНК, коли модель є лінійною.
Для простоти опису перетворень пронормуємо змінні хij,уi. Наступним чином:
де
Тоді
Надалі будемо вважати, що розглянуті змінні пронормовані описаним образом, і верхні індекси опустимо. Для полегшення демонстрації основних ідей приймемо досить природні припущення.
1. Для розглянутих змінних існують наступні межі:
2. Кількість досвідів n таке, що можна користуватися асимптотичними результатами, отриманими при
3. Погрішності виміру задовольняють одному з наступних типів обмежень:
Тип 1. Абсолютні погрішності виміру обмежені згідно (4.1.3):
Тип 2. Відносні погрішності виміру обмежені:
Тип 3. Обмеження накладені на суму погрішностей:
Перейдемо до обчислення нотни оцінки МНК. Справедлива рівність:
Скористаємося наступною теоремою з теорії матриць.
Теорема. Якщо функція f(λ) розкладається в степеневий ряд у колі збіжності |λ – λ0| < r, тобто
то це розкладання зберігає силу, якщо скалярний аргумент замінити будь-якою матрицею А, характеристичні числа якої λk, k = 1,…,n, лежать всередині кола збіжності.
Легко переконатися, що:
Це випливає з послідовності рівностей:
Застосуємо наведену вище теорему з теорії матриць, припускаючи
А = Δ Z і приймаючи, що власні числа цієї матриці задовольняють нерівності |λk|<1. Тоді одержимо:
Підставивши останнє співвідношення на закінчення згаданої теореми, одержимо: