Отмечаем хорошее совпадение эмпирических и теоретических данных.
Вариант 2
№ 2
Для сигнализации об аварии установлены 3 независимо работающие устройства. Вероятности их срабатывания равны соответственно р1 = 0,9, р2 = 0,95, р3 = 0,85. Найти вероятности срабатывания при аварии:
а) только одного устройства;
б только двух устройств;
в) всех трёх устройств.
Обозначим события: А – срабатывает только одно устройство; В – срабатывают 2 устройства; С – срабатывают все 3 устройства. Вероятности противоположных событий (не срабатывания) соответственно равны q1 = 0,1, q2 = 0,05, q3 = 0,15. Тогда
а) Р(А) = p1q2q3 + q1p2q3 + q1q2p3 = 0,9∙0,05 ∙0,15 + 0,1∙0,95∙0,15 + 0,1∙0,05∙0,85 = 0,02525.
б) Р(В) = p1p2q3 + p1q2p3 + q1p2p3 = 0,9∙0,95∙0,15 + 0,9∙0,05∙0,85 + 0,1∙0,95∙0,85 = 0,24725.
в) Р(С) = р1р2р3 = 0,9∙0,95∙0,85 = 0,72675.
№ 12
В партии из 1000 изделий имеется 10 дефектных. Найти вероятность того, что из взятых наудачу из этой партии 50 изделий ровно 3 окажутся дефектными.
По условию
n = 50, k = 3. Поскольку р малó, n достаточно большое, в то же время nр = 0,5 < 9, справедлива формула Пуассона: .Таким образом,
№ 22
По данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х).
хі | 2 | 3 | 4 | 5 | 8 |
рі | 0,25 | 0,15 | 0,27 | 0,08 | 0,25 |
Последовательно получаем:
5
М(Х) = ∑ хірі = 2∙0,25 + 3∙0,15 + 4∙0,27 + 5∙0,08 + 8∙0,25 = 4,43.
i=1
5
D(X) = ∑ xi²pi – M² = 2²∙0,25 + 3²∙0,15 + 4²∙0,27 +5²∙0,08 + 8²∙0,25 – 4,43²
і=1= 5,0451.
σ(Х) = √D(X) = √5,0451= 2,246.№ 32
а) дифференциальную функцию f(x) (плотность вероятности);
б) математическое ожидание и дисперсию величины х;
в) вероятность того, что X примет значение, принадлежащее интервалу
;г) построить графики функций F(x) и f(x).
Последовательно получаем:
а)
;в) Р(a < x < b) = F(b) – F(a) ÞP
= F(1) – F =Графики функций приводятся далее.
№ 42
Определить вероятность того, что нормально распределённая величина Х примет значение, принадлежащее интервалу (α;β) если известны математическое ожидание а и среднее квадратическое отклонение σ. Данные: α = 5; β = 14; а = 9; σ = 5.
Используя формулу
имеемПоскольку функция Лапласа есть нечетная, можем записать:
№ 52
хі | 7,6 | 8 | 8,4 | 8,8 | 9,2 | 9,6 | 10 | 10,4 |
mі | 6 | 8 | 16 | 50 | 30 | 15 | 7 | 5 |
Определить: а) выборочную среднюю; б) выборочную дисперсию;в) выборочное среднее квадратическое отклонение.
Для решения задачи введём условную переменную
где С – одно из значений хі , как правило, соответствующее наибольшему значению mі , а h – это шаг (у нас h = 0,4).
Пусть С = 8,8. Тогда
Заполним таблицу:
xi | mi | xi´ | ximi | (xi´)²mi |
7,6 | 6 | – 3 | – 18 | 54 |
8 | 8 | – 2 | – 16 | 32 |
8,4 | 16 | – 1 | – 16 | 16 |
8,8 | 50 | 0 | 0 | 0 |
9,2 | 30 | 1 | 30 | 30 |
9,6 | 15 | 2 | 30 | 60 |
10 | 7 | 3 | 21 | 63 |
10,4 | 5 | 4 | 20 | 80 |
∑ = 137 | ∑ = 51 | ∑ = 335 |
Используя таблицу, найдём
; D(x´) = ∑(xi´)²mi – (xi´)² = – 0,3723² = 2,3067.Теперь перейдем к фактическим значениям х и D(x):
x = x´h + C = 0,3723∙0,4 + 8,8 = 8,9489; D(x) = D(x´)∙h² = 2,3067∙0,4² = 0,3961;
σ(x) = √D(x) = √0,3961 = 0,6075.№ 62
у х | 4 | 8 | 12 | 16 | 20 | 24 | ny |
10 | 2 | 5 | 7 | ||||
20 | 6 | 8 | 4 | 18 | |||
30 | 8 | 46 | 10 | 64 | |||
40 | 5 | 20 | 4 | 29 | |||
50 | 3 | 14 | 2 | 5 | 22 | ||
nx | 2 | 19 | 62 | 48 | 6 | 3 | n = 140 |
найти выборочное уравнение регрессии.
vu | – 2 | – 1 | 0 | 1 | 2 | 3 | nv | nuvuv |
– 2 | 2 4 | 5 2 | 7 | 18 | ||||
– 1 | 6 1 | 8 0 | 4 –1 | 18 | 2 | |||
0 | 8 0 | 46 0 | 10 0 | 64 | 0 | |||
1 | 5 0 | 20 1 | 4 2 | 29 | 28 | |||
2 | 3 0 | 14 2 | 2 4 | 5 6 | 22 | 66 | ||
nu | 2 | 19 | 62 | 48 | 6 | 3 | n = 140 | ∑ = 114 |
Последовательно получаем:
; ; ; ; σu² = – (u)² = 0,9 – 0,329² = 0,792; σu = √0,792 = 0,89; σv² = – (v)² = 1,164 – 0,293² = 1,079; σv = √1,079 = 1,0385;По таблице, приведённой выше, получаем ∑nuvuv = 114.
Находим выборочный коэффициент корреляции:
Далее последовательно находим:
x = u∙h1 + C1 = 0,329∙4 + 12 = 13,314; y = v∙h2 + C2 =0,293∙10 + 30 = 32,929;
σx = σu∙h1 = 0,89∙4 = 3,56; σy = σv∙h2 = 1,0385∙10 = 10,385.
Уравнение регрессии в общем виде:
Таким образом, упрощая, окончательно получим искомое уравнение регрессии:Необходимо произвести проверку полученного уравнения регрессии при, по крайней мере, двух значениях х.
1) при х = 12 по таблице имеем
по уравнению: ух=12 = 2,266∙12 + 2,752 = 29,944; ε1 = 30,484 – 29,944 = 0,54;
2) при х = 16 по таблице имеем
по уравнению: ух=16 = 2,266∙16 + 2,752 = 39,008; ε2 = 39,167 – 39,008 = 0,159.
Отмечаем хорошее совпадение эмпирических и теоретических данных.