Смекни!
smekni.com

Решение задач по курсу теории вероятности и математической статистики (стр. 1 из 2)

Вариант 1

№ 1

Три стрелка делают по одному выстрелу по одной и той же цели. Вероятности поражения целей равны соответственно р1 = 0,9, р2 = 0,8, р3 = 0,7.

Найти вероятности того, что:

а) все три стрелка попадают в цель;

б) только один из них попадает в цель;

в) хотя бы один стрелок попадает в цель.

Обозначим события: А – все 3 стрелка попадают в цель; В – только один стрелок попадает в цель; С – хотя бы один стрелок попадает в цель.

Вероятности промахов равны соответственно: q1 = 0,1, q2 = 0,2, q3 = 0,3.

а) Р(А) = р1р2р3= 0,9∙0,8∙0,7 = 0,504.

б) Р(В) = p1q2q3 + q1p2q3 + q1q2p3 = 0,9∙0,2∙0,3 + 0,1∙0,8∙0,3 + 0,1∙0,2∙0,7 = 0,092.

в) Событие

– все три стрелка промахиваются. Тогда

Р(С) = 1 – Р(

) = 1 – 0,1∙0,2∙0,3 = 1 – 0,006 = 0,994.

№ 11

Вероятность наступления события в каждом из одинаковых независимых испытаний равна 0,02. Найти вероятность того, что в 150 испытаниях событие наступит ровно 5 раз

У нас nдостаточно великó, р малó, λ = np = 150 ∙ 0,02 = 3 < 9, k = 5. Справедливо равенство Пуассона:

. Таким образом,

№ 21

По данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х).

хі 1 2 3 4 5
рі 0,05 0,18 0,23 0,41 0,13

Последовательно получаем:

5

М(Х) = ∑ хірі = 0,05 + 2∙0,18 + 3∙0,23 + 4∙0,41 + 5∙0,13 = 3,39.

i=1

5

D(X) = ∑ xi²pi – M² = 0,05 + 2²∙0,18 + 3²∙0,23 + 4²∙0,41 + 5²∙0,13 – 3,39² = i=1

1,1579.

σ(Х) = √D(X) = √1,1579 = 1,076.

№ 31

Случайная величина Х задана интегральной функцией

а) дифференциальную функцию f(x) (плотность вероятности);

б) математическое ожидание и дисперсию величины х;

в) вероятность того, что X примет значение, принадлежащее интервалу

;

г) построить графики функций F(x) и f(x).

Последовательно получаем:

а)

;

в) Р(a < x < b) = F(b) – F(a) ÞP

= F(1) – F
=
– 0 =
.

Графики функций поданы далее.

№ 41

Определить вероятность того, что нормально распределённая величина Х примет значение, принадлежащее интервалу (α; β) если известны математическое ожидание а и среднее квадратическое отклонение σ. Данные: α = 2; β = 13; а = 10; σ = 4.

Используем формулу Р(α < x < β) =

Имеем: Р(2 < x < 13) =

= Ф
– Ф(–2).

Поскольку функция Лапласа есть нечетная, можем записать:

Ф

– Ф(–2) = Ф
+ Ф(2) = 0,2734 + 0,4772 = 0,7506.

№ 51

Поданному статистическому распределению выборки
хі 4 5,8 7,6 9,4 11,2 13 14,8 16,6
mі 5 8 12 25 30 20 18 6

Определить: а) выборочную среднюю; б) выборочную дисперсию;в) выборочное среднее квадратическое отклонение.

Для решения задачи введём условную переменную

, где С – одно из значений хі, как правило, соответствующее наибольшему значению mі , а h– это шаг (у нас h = 1,8).

Пусть С = 11,2. Тогда

.

Заполним таблицу:

xi mi xi´ ximi (xi´)²mi
4 5 – 4 – 20 80
5,8 8 – 3 – 24 72
7,6 12 – 2 – 24 48
9,4 25 – 1 – 25 25
11,2 30 0 0 0
13 20 1 20 20
14,8 18 2 36 72
16,6 6 3 18 54
∑ = 124 ∑ = – 19 ∑ = 371

Используя таблицу, найдём

;

D(x´) = ∑(xi´)²mi – (xi´)² =
– (– 0,1532)² = 2,9685.

Теперь перейдем к фактическим значениям х и D(x):

_

x = x´h + C = – 0,1532∙1,8 + 11,2 = 10,9242;D(x) =D(x´)∙h² = 2,9685∙1,8² = 9,6178;

σ(x) = √D(x) = √9,6178 = 3,1013.

№ 61

По данной корреляционной таблиценайти выборочное уравнение регрессии.


у х 6 9 12 15 18 21 ny
5 4 2 6
15 5 23 28
25 18 44 5 67
35 1 8 4 13
45 4 2 6
nx 4 7 42 52 13 2 n= 120

Для упрощения расчетов введем условные переменные

u =

, v =
.Составим таблицу:
vu – 3 – 2 – 1 0 1 2 nv nuvuv
– 2 4 6 2 4 6 32
– 1 5 2 23 1 28 33
0 18 0 44 0 5 0 67 0
1 1–1 8 0 4 1 13 3
2 4 2 2 4 6 16
nu 4 7 42 52 13 2 n = 120 ∑ = 84

Последовательно получаем:

;

;

;

;

σu² =
– (u)² = 1,058 – (– 0,425)² = 0,878; σu = √0,878= 0,937;

σv² =
– (v)² = 0,742 – (– 0,125)² = 0,726; σv = √0,726 = 0,8521;

По таблице, приведённой выше, получаем ∑nuvuv = 84.

Находим выборочный коэффициент корреляции:

Далее последовательно находим:

x= u∙h1 + C1 = – 0,425∙3 + 15 = 13,725; y = v∙h2 + C2 = – 0,125∙10 + 25 = 23,75;

σx= σu∙h1 = 0,937∙3 = 2,811; σy = σv∙h2 = 0,8521∙10 = 8,521.

Уравнение регрессии в общем виде:

Таким образом,

упрощая, окончательно получим искомое уравнение регрессии:

Необходимо произвести проверку полученного уравнения регрессии при, по крайней мере, двух значениях х.

1) при х = 12 по таблице имеем

по уравнению:

ух=12 = 2,457∙12 – 9,968 = 19,516; ε1 = 19,762 – 19,516 = 0,246;

2) при х = 18 по таблице имеем

по уравнению:

ух=18 = 2,457∙18 – 9,968 = 34,258; ε2 = 34,258 – 34,231 = 0,027.