Дисциплина: Высшая математика
Тема: Решение произвольных систем линейных уравнений
1. Решение произвольных систем линейных алгебраических уравнений
Выше рассмотрены решения квадратных невырожденных систем линейных алгебраических уравнений матричным методом и методом Крамера. Однако они не пригодны в тех случаях, когда квадратная система уравнений вырождена или когда система вообще не является квадратной.
В связи с этим перейдем к рассмотрению систем линейных алгебраических уравнений общего вида, когда
В данном случае матрица системы является прямоугольной, у нее нет определителя, и метод Крамера для решения системы не применим. Поэтому, прежде чем решать данную систему, рассмотрим две теоремы.
Теорема 1.1. Если ранг матрицы совместной системы линейных алгебраических уравнений равен числу неизвестных, то система имеет единственное решение.
Доказательство. Если ранг матрицы системы равен
Теорема 1.2. Если ранг матрицы совместной системы линейных алгебраических уравнений меньше числа неизвестных, то система имеет бесконечное множество решений.
Доказательство. По условию система совместна и
Минор будет иметь вид:
Так как любая строка матрицы
или
Придавая неизвестным
Данная система является квадратной, ее определитель
Так как числа
Неизвестные, коэффициенты при которых входят в базисный минор, называются базисными. Остальные неизвестные называются свободными.
2. Система однородных линейных алгебраических уравнений
Важное место среди всех систем линейных алгебраических уравнений занимают однородные системы с произвольными
Данные системы всегда совместны, так как обязательно имеют решение вида
Если
В случае, когда ранг матрицы системы меньше числа неизвестных, то решений, согласно теореме 1.2, будет бесконечное множество. Пусть в этом случае матрицы - столбцы
Тогда выражение
Теорема. Если ранг матрицы однородной системы линейных алгебраических уравнений меньше числа неизвестных, то есть , то существует
линейно независимых решений системы
,
,...,
, а любые другие решения можно представить как их линейную комбинацию.
Доказательство. Пусть ранг основной матрицы системы
Здесь
Рассмотрим
По аналогии с результатом п. 6.3 все они линейно независимы, и произвольное решение системы можно представить в виде:
что и требовалось доказать.
Определение. Фундаментальной системой решений однородной системы линейных алгебраических уравнений называется совокупность всех ее линейно независимых решений.
Если в фундаментальной системе решений свободные неизвестные по очереди выражаются через единицу, в то время как остальные равны нулю, то такая фундаментальная система решений называется нормированной.