Розв’язати графічно задачу лінійного програмування
Розв’язання:
Розглянемо на площині х1Оx2 сумісну систему лінійних нерівностей
Кожна нерівність цієї системи геометрично визначає півплощину з граничною прямою
Рис. 1.
Сукупність цих точок (розв’язків) називають багатокутником розв’язків Він може бути точкою, відрізком, променем, багатокутником, необмеженою багатокутною областю.
Якщо в системі обмежень (1) п = 3, то кожна нерівність геометрично представляє півпростір тривимірного простору, гранична площина котрого
Нехай у системі обмежень (1) п > 3; тоді кожна нерівність визначає півпростір n-вимірного простору з граничною гіперплощиною
Якщо система обмежень сумісна, то по аналогії з тривимірним простором вона утворює спільну частину в n-вимірному просторі – опуклий багатогранник допустимих розв’язків.
Таким чином, геометрично задача лінійного програмування являє собою відшукання такої точки багатогранника розв’язків, координати, якої надають лінійній функції максимальне (мінімальне) значення, причому допустимими розв’язками є усі точки багатогранника розв’язків.
Цільову функцію
Запишемо систему нерівностей у вигляді:
Розв’яжемо задачу графічно.
Побудуємо систему обмежень (1), (2), (3).
Побудуємо також лінії рівня: х1 + х2 = С. С = const.
Розв’язок на перетині Ох2 та (3):
Отже, розв’язок є точка
Розв’язати симплекс методом:
Розв’язання:
Графічний метод для визначення оптимального плану задачі лінійного програмування доцільно застосовувати лише для задач із двома змінними. За більшої кількості необхідно застосовувати загальний метод розв’язування задач лінійного програмування. З властивостей розв’язків задачі лінійного програмування відомо: оптимальний розв’язок задачі має знаходитись в одній з кутових точок багатогранника допустимих розв’язків. Тому найпростіший спосіб відшукання оптимального плану потребує перебору всіх кутових точок (можливих допустимих планів задачі). Кожний опорний план визначається системою m лінійно незалежних векторів, які містяться в системі обмежень задачі з n векторів
Задачі, що описують реальні економічні процеси мають значну розмірність і простий перебір всіх можливих опорних планів таких задач є дуже складним, навіть за умови застосування сучасних ЕОМ. Отже необхідне використання методу, який дає можливість скоротити кількість обчислень. Такий метод запропоновано американським вченим Дж. Данцігом у 1949 році – так званий симплекс-метод.
Ідея методу полягає в здійсненні направленого перебору допустимих планів, таким чином, що на кожному кроці здійснюється перехід від одного опорного плану до наступного, який є хоча б не гіршим за попередній. Значення функціоналу при переході змінюється в потрібному напрямку: збільшується (для задачі на максимум) чи зменшується (для задачі на мінімум).
Процес розв’язування задачі симплекс-методом має ітераційний характер: однотипові обчислювальні процедури (ітерації) повторюються у певній послідовності доти, доки не буде отримано оптимальний план задачі або з’ясовано, що його не існує.
Отже, симплекс-метод — це поетапна обчислювальна процедура, яка дозволяє починаючи з відомого опорного плану за скінчену кількість кроків отримати оптимальний план задачі лінійного програмування.
Розглянемо задачу лінійного програмування подану в канонічній формі:
Не втрачаючи загальності припустимо, що система містить перші m одиничних векторів:
Система (1) у векторній формі матиме вигляд:
де
Такому плану відповідає розклад
де
Розглянемо, як виходячи з початкового опорного плану (5) перейти до наступного опорного плану, що відповідає процесу перебору кутових точок багатогранника розв’язків.
Оскільки
Розглянемо такий розклад для довільного не базисного вектора, наприклад, для
Припустимо, що у виразі (7) існує хоча б один додатній коефіцієнт
Введемо до розгляду деяку поки що невідому величину