де
-- елементарні нижні трикутні матриці. Щоб отримати аналогічний запис методу Гауса з вибором головного елементу, необхідно розглянути матриці перестановок.Означення 1. Матрицею перестановок Р називається квадратна матриця, у якої в кожному рядку і в кожному стовпці тільки один елемент відмінний від нуля і рівний одиниці.
Означення 2. Елементарною матрицею перестановок
називається матриця, отримана з одиничної матриці перестановкою к-го і l-го рядків.Наприклад, елементарними матрицями перестановок третього порядку є матриці:
Можна відзначити наступні властивості елементарних матриць перестановок, витікаючі безпосередньо з їх визначення.
1) Добуток двох (а отже, і будь-якого числа) елементарних матриць перестановок є матриця перестановок (не обов'язково елементарною).
2) Для будь-якої квадратної матриці А матриця відрізняється від А перестановкою к-го і l-го стовпців.
3) Для будь-якої квадратної матриці А матриця відрізняється від А перестановкою к-го і l-го стовпців.
Застосування елементарних матриць перестановок для опису методу Гауса з вибором головного елементу по стовпцю можна пояснити на наступному прикладі системи третього порядку:
(4)Система має вигляд (1), де
(5)Максимальний елемент першого стовпця матриці А знаходиться в другому рядку. Тому треба поміняти місцями другий і перший рядки і перейти до еквівалентної системи
Систему (6) можна записати у вигляді
(7)тобто вона виходить з системи (4) шляхом множення на матрицю перестановок
Далі, до системи (6) треба застосувати перший крок звичайного методу виключення Гауса. Цей крок еквівалентний множенню системи (7) на елементарну нижню трикутну
В результаті від системи (7) перейдемо до еквівалентної
(8)або в розгорненому вигляді:
(9)З останніх двох рівнянь системи (9) треба тепер виключити змінне
. Оскільки максимальним елементом першого стовпця укороченої системи (10)є елемент другого рядка, робимо в (10) перестановку рядків і тим самим від системи (9) переходимо до еквівалентної системи, яку можна записати в матричному вигляді як:
. (12)Таким чином система (12) отримана з (8) застосуванням элементарної матриці перестановок:
Далі до системи (11) треба застосувати другий крок виключення звичайного методу Гауса. Це еквівалентно множенню системи (11) на елементарну нижню трикутну
В результаті отримаємо систему
(13)або
(14)Завершальний крок прямого ходу методу Гауса полягає в заміні останнього рівняння системи (14)
що еквівалентно множенню (13) на елементарну нижню трикутну матрицю
Таким чином, для розглянутого прикладу процес виключення Гауса з вибором головного елементу по стовпцю записується так
(15)По побудові матриця
(16)є верхньою трикутною матрицею з одиничною головною діагоналлю.
Відмінність від звичайного методу Гауса полягає в тому, що як співмножники в (16) разом з елементарними трикутними матрицями
можуть бути присутніми елементарні матриці перестановок .Покажемо ще, що з (16) слідує розкладання
PA=LU (17)
L -нижняя трикутна матриця, що має обернену, P - матриця перестановок.
Для цього знайдемо матрицю:
(18)Матриця отримується з матриці
перестановкою другого і третього рядків:Матриця отримується з
перестановкою другого і третього стовпцівтобто
-нижняя трикутна матриця, що має зворотну.т.е.З (18), враховуючи рівність
, отримаємо (19)Звідси і з (16) видно, що
де позначено
. Оскільки Р-матрица перестановок і L-нижняя трикутна матриця, властивість (17) доведена. Воно означає, що метод Гауса з вибором головного елементу по стовпцю еквівалентний звичайному методу Гауса, застосованому до матриці РА, тобто до системи, отриманої з початкової системи перестановкою деяких рівнянь.3. Загальний висновок. Результат, отриманий раніше для дуже приватного прикладу, справедливий і у разі загальної системи рівнянь (1).
А саме, метод Гауса з вибором головного елементу по стовпцю можна записати у вигляді:
(20)де
- елементарні матриці перестановок такі, що і - елементарні нижні трикутні матриці.Звідси, використовуючи співвідношення перестановленості, аналогічні (19), можна показати, що метод Гауса з вибором головного елементу еквівалентний звичайному методу Гауса, застосованому до системи
PAx=Pf (21)
де Р - деяка матриця перестановок.
Теоретичне обгрунтування методу Гауса з вибором головного елементу міститься в наступній теоремі.
ТЕОРЕМА 1. Якщо
то існує матриця перестановок Р така, що матриця РА має відмінні від нуля кутові мінори.Наслідок. Якщо
то існує матриця престанавок Р така, що справедливе розкладанняРА=LU, (22)
де L- нижня трикутна матриця з відмінними від нуля діагональними елементами і U- верхня трикутна матриця з одиничною головною діагоналлю. В цьому випадку для розв’язання системи (1) можна застосовувати метод Гауса з вибором головного елементу.
1.4 Алгоритм знаходження рангу матриці
Нехай потрібно обчислити ранг матриці
розмірів . Якщо матриця нульова, то за означенням маємо . В іншому випадку за допомогою перестановки рядків і стовпців матриці добиваємося того, щоб у лівому верхньому куті матриці стояв ненульовий елемент. Отже, вважаємо, що .Перший рядок залишаємо без змін. До другого рядка додаємо перший, помножений на число
. У результаті другий рядок приймає вигляд:Потім до третього рядку додаємо перший рядок, помножений на число
. У результаті третій рядок приймає вигляд:Процес продовжуємо до тих пір, поки не отримаємо нуль на першому місці в останньому рядку. Перетворена матриця має вигляд: