Смекни!
smekni.com

Розвиток творчого мислення старшокласників на уроках математики з використанням інформаційних технологій (стр. 6 из 11)

Методичні рекомендації щодо організації проектної діяльності учнів і вчителів

Метод проектів - це приклад інформаційно - педагогічних технологій навчання технологій, а засобу їхні проведення можуть бути різними. Це можуть бути комп'ютери, телекомунікації, інтерактивне телебачення, факс, радіозв'язок тощо. Тому головне - чітко визначитися із самим методом.

Перш ніж приступитися до певного проекту, якщо вже є ідея проекту, необхідно визначитися з його соціальною, культурною, економічною значимістю. Можливо, намічена ідея може бути коректно усвідомлена тільки тоді, коли буде розглянута в певній системі знань, соціального явища, економічної проблеми тощо. Інакше кажучи, обрана ідея може «потягнути» за собою цілую серію взаємопов'язаних проектів, що становлять єдину тему, проблему, що доцільно розглядати, аналізувати, вивчати послідовно, крок за кроком, проект по проекті, усе більш глибоко вникаючи в проблему розглядаючи різні її аспекти. Мова тоді вже йде про цілу програму, що складається із серії проектів, які можуть охоплювати різні галузі знання, різні роки навчання. Це не повинне зупиняти вчителя. Він може намітити цілу програму дослідницьких проектів не на один рік, вводячи її з роками до структури відповідно до програмному матеріалу. Тому вчитель, насамперед, повинен розглянути свою ідею із цього погляду:

- Виявлення й формулювання загальної проблеми;

- Виявлення окремої проблеми для певного дослідницького завдання з урахуванням вікових особливостей і розвитку дітей;

- Презентація ситуацій для виявлення проблеми;

- Формулювання проблеми;

- Формулювання гіпотез;

- Методи збору й обробки даних на підтвердження висунутих гіпотез;

- Збір даних;

- Обговорення отриманих даних;

- Перевірка гіпотез;

- Формулювання понять, узагальнень, висновків;

- Впровадження висновків.

На сьогодні існують кілька національних, регіональних і міжнародних програм, які впроваджують використання нових інформаційних технологій для створення різноманітних проектів, у яких беруть участь учні й вчителя середніх шкіл. Це такі програми як EuroSchoolNet, Orilla Orilla, GLOBE.


Висновок до главі I

Запропоновані описи різних методик інтерактивного навчання будуть сприяти розвитку творчого мислення старшокласників, вихованню позитивного відношення до процесу розвитку учнів і дадуть можливість учням одержати досвід, що допоможе більш ефективно використати придбані знання на практиці.

Інноваційні методики передбачають спільну групову роботу, дебати, моделювання, рольові ігри, дискусії, індивідуальні й групові проекти тощо. Вони не тільки підвищують зацікавленість учнів предметом, але й забезпечують більше глибоке засвоєння змісту, вироблення цивільних навичок і відданість демократичним цінностям.


Розділ 2. Використання персонального комп'ютера при побудові графіків функцій в 8 класах

2.1. Вивчення функцій й їхніх графіків у загальноосвітній школі

Поняття функції є одним з найважливіших математичних понять. Деякі види функцій розглядалися ще в далекій давнині (астрономічні таблиці вавилонян, стародавніх греків тощо). Однак загального поняття функції ще не було.

Поняття функції виниклов

XIV ст. але в той час воно не набрало ще досить чіткої форми. Введення в 1637 році Р. Декартом поняття змінної величини істотно вплинуло на формування й розвиток поняття функції.

Визначення «функція» уперше було введено Г. Лейбніцем, а чисто арифметичне визначення поняття числової функції вперше сформулював Бернуллі, поки Лобачевский в 1834 році не сформував більш загальне визначення функції: число, що задається для кожного

й разом з
поступово змінюється [67]. Три роки потому П. Діріхле прийшов до висновку, що спосіб становлення співвідношення між значеннями
й
не важливий, і дав визначення функції:
є функція від
, якщо будь якому значенню
відповідає значення
, причому зовсім не істотно, яким саме способом установлена зазначена відповідність [47].

У загальноосвітній школі поняття функції вперше вводиться у восьмому класі.

Якщо кожному значенню змінної х з деякої множини М відповідає одне значення змінної у, то змінну у називають функцією від х.

У підручнику приводяться приклади функціональних залежностей і не функціональних. Даються способи завдання функцій:

- Таблицею;

- Аналітично;

- Графіком.

Основними завданнями вивчення числових функцій є формування в учнів:

1.Навичок дослідження функцій;

2.Навичок побудови їхніх графіків;

3.Навичок знаходження функції, зворотної до даної функції;

4.Навичок застосування функцій для опису й вивчення реальних процесів.

Відповідно до цих завдань у результаті вивчення функцій учні повинні навчитися:

1.Знаходити область визначення й область значень, проміжки знакозмінних величин, нулі функції, досліджувати функцію на монотонність;

2.Будувати графіки функцій, визначати вивчені функції за їхніми графіками, уміти досліджувати функцію за її графіком;

3.Знаходити функцію, зворотну до даноі, і будувати її графік за графіком даної функції;

4.Застосовувати виучені функції для розв’язування конкретних задач.

Вивчення лінійної функції починається з вивчення окремого виду - прямої пропорційності. Такий підхід є, по-перше, найбільш доступним, а по-друге, дає можливість у процесі вивчення лінійної функції вивчити властивості прямої пропорційності.

У результаті розв’язування деякої задачі вираження виду у=kх, варто помітити, що це вираження із двома змінними задає відношення між змінною величиною х і змінною величиною y. Оскільки для кожного значення х0 змінної х існує єдине значення у0 змінної, котре перебуває у відношенні у

=kх
,
те відношення у=kx є функцією.

Тот факт, що графіком функції є пряма обґрунтовується на основі наочних подань учнів за допомогою індуктивних міркувань. Розглянувши побудову декількох точок для графіка функцій виду у=kx при різних значеннях k, у кожному випадку зауважуємо, що точки графіка належать одній прямій. Звідси й робимо висновок. Для того, щоб висновок був правильним, важливе значення має точність побудов.

Розглядаючи графік, установлюємо властивості функції.

Під час вивчення лінійної функції загального виду важливо вимагати, щоб учні зрозуміли, що графік функції y=kx+b можна дістати паралельним перенесенням графіка функції у=kx у напрямку осі OY.

До числа нелінійних алгебраїчних функцій, які вивчаються в неповній середній школі належать: обернена пропорційність, степенева функція з натуральним показником і функції у=ах

+ вх + с,

[61].

У процесі вивчення оберненої пропорційності можна формувати поняття непарної функції і її графіка.

Вивчаючи функції у = ах2 й у = ах3, важливо розглянути питання про існування зворотних до них функцій.

Дослідження функцій у = хn і побудову їх графіків доцільно виконувати, розділивши їх на два класи за ознакою парності або непарності n.

Оскільки послідовність є функцією, заданої на множині всіх або перших n натуральних чисел, то поняття послідовності можна формувати під час вивчення поняття функції. Для цього досить включити в число перших прикладів відповідностей і функцій такі, областю визначення,яких є множина перших n натуральних чисел, а кожну з функцій, заданих формулами, розглядати спочатку на множині натуральних, цілих й, нарешті, на множині раціональних чисел.

Такий підхід до вивчення функції дасть можливість не тільки на більше ранньому етапі сформувати поняття послідовності, але й розширить можливості щеплення навичок дослідження функцій. [61].

Ціль вивчення функцій в 8 класі.

Ввести поняття функції, області визначення й області значень функції, способи завдання функції; розглянути функції, відзначені в програмі, їх графіки й властивості.

Учні повинні:

Мати поняття про функцію, аргумент і значення функції, область визначення, область значень, нулі функції, графіки функції;

Знати:

- Означення функції:

- Три основних способи завдання функції;

- Означення лінійної функції, прямої і зворотної пропорційності;

- Основні властивості відзначених функцій і функцій у=х

, у =
, [у=х
].

Уміти:

- Знаходити область визначення й область значень функції;