Смекни!
smekni.com

Розв’язання лінійних задач методами лінійного програмування (стр. 3 из 6)

Таблиця5– Розподіл продукту по споживачам

Виробник Споживач Запаси продукту
8 3 3 4 0 60
40 20
5 2 7 5 0 20
10 10
5 4 8 2 0 30
20 10
7 1 5 7 0 20
5 15
Потреба в продукті 40 30 30 15 15 130

Таким чином, в таблиці5 отримали початковий опорний план, транспортні витрати за яким складають:

Недоліком використаного методу знаходження опорного плану є ігнорування величини тарифів на перевезення продукту.

Для визначення оптимального плану перевезень використаємо метод потенціалів. Для цього кожному виробнику Аі (кожному рядку) ставимо у відповідність деяке число

а кожному споживачу Ві (кожному стовпчику)– деяке число
На основі таблиці5 складемо таблицю6, в якій додамо один стовпчик і один рядок для написання величини параметрів
і
. Їх знаходимо використовуючи першу умову оптимальності транспортної задачі:
(для кожної зайнятої клітини сума потенціалів повинна дорівнювати вартості одиниці перевезення, що записана в цій клітині).

Таблиця6– Перевірка оптимальності опорного плану

Виробник Споживач Запаси продукту
8 3 3 4 0 60 0
40 20
5 2 7 5 0 20 -1
10 10
5 4
8
2 0 30 0
20 10
7 1 5 7 0 20 5
5 15
Потреба в продукті 40 30 30 15 15 130 ×
8 3 8 2 -5 × ×

Систему потенціалів можна побудувати лише для невирожденого опорного плану. Такий план містить m+n-1 лінійно незалежних рівнянь виду

з m+n невідомими (де m– кількість постачальників, n– кількість споживачів). Рівнянь на одне менше, ніж невідомих, тому система є невизначеною і для її розв’язку одному невідомому (нехай ним буде u1) придамо нульове значення.

Для того, щоб план був оптимальним, повинна виконуватись умова: для кожної незайнятої клітини сума потенціалів повинна бути менша або дорівнювати вартості одиниці перевезення, що стоїть в цій клітині:

тобто
Робимо перевірку для всіх вільних клітин:

З розрахунків бачимо, що умова оптимальності не виконується для клітин, А1В3, А2В1, А3В1, А4В1, А4В2, і А4В3. Клітину, в якій додатне число отримали максимальним (А2В3, оскільки max(5;2;3;6;7;8)=8) зробимо зайнятою, для цього побудуємо цикл і отримуємо таблицю7.

Таблиця7– Другий крок пошуку оптимального рішення

Виробник Споживач Запаси продукту
8
3
3 4 0 60 0
40 20
5 2 7 5 0 20 -1
10 10
5 4 8 2 0 30 0
15 15
7 1 5 7 0 20 -3
5 15
Потреба в продукті 40 30 30 15 15 130 ×
8 3 8 2 3 × ×

Транспортні витрати при такому плані перевезення складають:

Перевірка всіх вільних клітин:

Отримали від’ємні значення у всіх клітинах окрім А1В3 (5), А1В5 (3), А2В1 (2), А2В5 (2), А3В1 (3) і А3В5 (3). Максимальне значення max(5;3;2;2;3;3)=5в клітині А1В3, тому заповнюємо і цикл будуємо для неї (цикл показано в таблиці7, результат дій в таблиці8).

Таблиця8– Третій крок пошуку оптимального рішення

Виробник Споживач Запаси продукту
8 3 3 4 0 60 -
40 10 10
5 2 7 5 0 20 -1
20
5 4 8 2 0 30 5
15 15
7 1 5 7 0 20 2
5 15
Потреба в продукті 40 30 30 15 15 130 ×
8 3 3 -3 -2 × ×

Транспортні витрати: