Смекни!
smekni.com

Розрахунок типових задач з математичної статистики (стр. 3 из 4)

3.1 Обчислити значення критерію збіжності Пірсона

На основі отриманих результатів обробки даних вибірки потрібно підрахувати наступний статистичний критерій:

,

де s - кількість інтервалів розбиття,

ni - кількість експериментальних даних, що попали в і-й інтервал, ni0 - теоретична кількість даних, що попали в і-й інтервал, pi0 - теоретична імовірність знаходження значень випадкової величини X в і-му інтервалі,

N - загальна кількість експериментальних даних (у РГЗ N = 100). Тут

- велика літера
(хі).

3.2 Зробити висновок про вірність висунутої гіпотези H0

Поведінку отриманої величини

в залежності від правильності чи неправильності висунутої гіпотези H0 пояснює теорема Пірсона.

Скорочене формулювання теореми Пірсона:

Якщо гіпотеза H0 вірна, то при N→ ∞ закон розподілення величини

наближується до закону розподілення хі-квадрат (
) з k = s - 1 ступенями свободи.

Тут k дорівнює s-1 (а не s, як видно з визначення поняття ступеня свободи), бо величини ni і відповідні їм величини ni0, по-перше, пов’язані, по-друге, пов’язані лінійними співвідношеннями (напр.

,
). Тому вираховується 1.

Практичне значення цієї теореми полягає в тому, що за правильності висунутої гіпотези H0 при великих об’ємах вибірки закон розподілення величини

можна вважати законом розподіленням
з k = s - 1 ступенями свободи.

Якщо ж висунута гіпотеза H0 не вірна, то при великих об’ємах вибірки величина

необмежено зростає (тобто
).

Зосталося визначити, чому ж дорівнює число ступенів свободи k в нашому випадку. Значення k знаходиться з формули:

k = s - 1 - r,

де s - число інтервалів розбиття діапазону значень випадкової величини X, r - число параметрів розподілення, що були оцінені за даними вибірки (і використовувалися при підрахункові теоретичних імовірностей). Величини ni і відповідні їм величини ni0, по-перше, пов’язані, по-друге, пов’язані через r параметрів. Тому ще вираховується число параметрів розподілення r.

З таблиці розподілення

з k = s - 1 - r ступенями свободи знаходимо найближче більше значення. З того міркування що, якщо нульова гіпотеза (H0) вірна, то повинна виконуватися нерівність
. Цьому найближчому більшому значенню відповідає певне значення рівня значимості α.

Рівень значимості α - імовірність помилково відкинути висунуту гіпотезу H0, коли вона вірна. Тоді імовірність того, що гіпотеза H0 правильно описує закон розподілення випадкової величини X, дорівнюватиме 1 - α.

Потрібно задатися рівнем значимості α0. На практиці α0 часто приймається рівним 0.05 (або 5%).

Таким чином, якщо отримане з таблиці значення рівня значимості α не перевищує заданого α0, то гіпотеза H0 приймається з імовірністю 1 - α. На основі цього робиться наступний висновок: практичні дані узгоджуються з гіпотезою H0, не має підстав її спростувати.

4. Приклад розв'язку типової задачі

Нехай випадкова величина X приймає наступний безперервний ряд значень:

0.3977801.6260473.712942-0.732191-1.070720

0.594877 - 0.0112791.716456-3.3376170.007172

0.663299-0.4412122.0750801.881620-2.088742

1.9913241.0363951.1338381.1655331.264862

2.3115392.8839420.232771-1.5445800.319252

2.9683571.775734-0.3564310.8063171.110993

0.0249601.838822-0.5991992.512275-3.040607

2.874235-1.6642481.0080920.7625010.107686

1.565826-0.4559481.887287-0.8452910.719599

2.3363190.9064131.733929-0.4664472.120893

0.3313110.8929770.988919-0.1805820.101599

2.1264641.0965252.121343-1.2558211.779378

4.356973-0.098316-1.3924411.6871980.374275

1.631167-1.9162120.4193822.026432-1.076515

1.467196-1.3863272.266472-1.1286360.291052

0.9213022.2678832.4135031.424872-1.084125-0.856300-0.055433-1.1430031.1496910.179690

1.7908670.3897065.6872311.014007-1.892447

1.0589170.564070-0.288985-0.0135031.470428

0.3068732.869473-0.8498070.6511941.461751

Виділили найбільше та найменше значення випадкової величини X у вибірці:

XMIN=-4.356973, XMAX=5.687231.

Проводимо розбиття діапазону значень випадкової величини X на рівновіддалені.

Маємо 11 одиничних інтервалів (в нашому випадку це зручно для побудови гістограми). Тобто s=11. Оцінивши число ступенів свободи k як k≈ s, робимо висновок, що знижувати кількість значень випадкової величини, які попадають в кожний інтервал розбиття не можна (враховуємо це при корекції розбиття в наступному пункті).

Результати заносимо в Таблицю 4.1 (друга строчка).

Обчислюємо частоти появи значень випадкової величини X в кожному з інтервалів розбиття - експериментальні частоти. Результати заносимо в Таблицю 4.1 (третя строчка).

Проводимо корекцію розбиття для застосування методу Пірсона (проводимо укрупнення крайніх інтервалів шляхом їхнього об’єднання, доки не отримаємо мінімальну допустиму в методі Пірсона кількість значень випадкової величини, що попадають у формуємий інтервал; в нашому випадку ця кількість повинна бути не менша 10).

Результати заносимо в Таблицю 4.2 (друга строчка).

Проводимо обчислення оцінок основних характеристик випадкової величини: математичного чекання, дисперсії та середньоквадратичного відхилення.

Будуємо за даними Таблиці 4.1 гістограму (рис.4.1) - експериментальний варіант графіка функції щільності імовірності. Будуємо гістограму, бо маємо справу з попаданням безперервної випадкової величини X в один з інтервалів розбиття на рівновіддалені.


Рис.4.1 Гістограма експериментального графіку функції щільності імовірності.

Аналізуємо обчислені оцінки математичного чекання та отриману гістограму.

Безперервна випадкова величина X приймає від’ємні значення. Отже, їй залишається бути розподіленою за нормальним (гаусовським) законом розподілення.

„Правило 3-х сігм” приблизно виконується (більшість значень дійсно лежить в інтервалі (-4.165276; 5.252514)). Відхилення практичної гістограми від теоретичної допоможе оцінити характеристика асиметрії та ексцес.

Таким чином, висуваємо гіпотезу H0 - випадкова величина X розподілена за нормальним законом розподілення.

Для обчислення теоретичних частот попадання випадкової величини X в коректований інтервал (з Таблиці 4.2) можна використовувати дві методики. Ми будемо застосовувати другу як більш теоретично обґрунтовану та правильнішу, а також точнішу.

Перша методика проста, але обчислення на її основі носять приблизний, оціночний характер. Перейдемо в обчисленнях від загальної до центрованої нормальної величини. Теоретично наша випадкова величина вважається розподіленою за загальним нормальним законом. Його функція щільності імовірності має в нашому випадку вигляд:

.