На основі отриманих результатів обробки даних вибірки потрібно підрахувати наступний статистичний критерій:
,де s - кількість інтервалів розбиття,
ni - кількість експериментальних даних, що попали в і-й інтервал, ni0 - теоретична кількість даних, що попали в і-й інтервал, pi0 - теоретична імовірність знаходження значень випадкової величини X в і-му інтервалі,
N - загальна кількість експериментальних даних (у РГЗ N = 100). Тут
- велика літера (хі).Поведінку отриманої величини
в залежності від правильності чи неправильності висунутої гіпотези H0 пояснює теорема Пірсона.Скорочене формулювання теореми Пірсона:
Якщо гіпотеза H0 вірна, то при N→ ∞ закон розподілення величини
наближується до закону розподілення хі-квадрат ( ) з k = s - 1 ступенями свободи.Тут k дорівнює s-1 (а не s, як видно з визначення поняття ступеня свободи), бо величини ni і відповідні їм величини ni0, по-перше, пов’язані, по-друге, пов’язані лінійними співвідношеннями (напр.
, ). Тому вираховується 1.Практичне значення цієї теореми полягає в тому, що за правильності висунутої гіпотези H0 при великих об’ємах вибірки закон розподілення величини
можна вважати законом розподіленням з k = s - 1 ступенями свободи.Якщо ж висунута гіпотеза H0 не вірна, то при великих об’ємах вибірки величина
необмежено зростає (тобто ).Зосталося визначити, чому ж дорівнює число ступенів свободи k в нашому випадку. Значення k знаходиться з формули:
k = s - 1 - r,
де s - число інтервалів розбиття діапазону значень випадкової величини X, r - число параметрів розподілення, що були оцінені за даними вибірки (і використовувалися при підрахункові теоретичних імовірностей). Величини ni і відповідні їм величини ni0, по-перше, пов’язані, по-друге, пов’язані через r параметрів. Тому ще вираховується число параметрів розподілення r.
З таблиці розподілення
з k = s - 1 - r ступенями свободи знаходимо найближче більше значення. З того міркування що, якщо нульова гіпотеза (H0) вірна, то повинна виконуватися нерівність . Цьому найближчому більшому значенню відповідає певне значення рівня значимості α.Рівень значимості α - імовірність помилково відкинути висунуту гіпотезу H0, коли вона вірна. Тоді імовірність того, що гіпотеза H0 правильно описує закон розподілення випадкової величини X, дорівнюватиме 1 - α.
Потрібно задатися рівнем значимості α0. На практиці α0 часто приймається рівним 0.05 (або 5%).
Таким чином, якщо отримане з таблиці значення рівня значимості α не перевищує заданого α0, то гіпотеза H0 приймається з імовірністю 1 - α. На основі цього робиться наступний висновок: практичні дані узгоджуються з гіпотезою H0, не має підстав її спростувати.
Нехай випадкова величина X приймає наступний безперервний ряд значень:
0.3977801.6260473.712942-0.732191-1.070720
0.594877 - 0.0112791.716456-3.3376170.007172
0.663299-0.4412122.0750801.881620-2.088742
1.9913241.0363951.1338381.1655331.264862
2.3115392.8839420.232771-1.5445800.319252
2.9683571.775734-0.3564310.8063171.110993
0.0249601.838822-0.5991992.512275-3.040607
2.874235-1.6642481.0080920.7625010.107686
1.565826-0.4559481.887287-0.8452910.719599
2.3363190.9064131.733929-0.4664472.120893
0.3313110.8929770.988919-0.1805820.101599
2.1264641.0965252.121343-1.2558211.779378
4.356973-0.098316-1.3924411.6871980.374275
1.631167-1.9162120.4193822.026432-1.076515
1.467196-1.3863272.266472-1.1286360.291052
0.9213022.2678832.4135031.424872-1.084125-0.856300-0.055433-1.1430031.1496910.179690
1.7908670.3897065.6872311.014007-1.892447
1.0589170.564070-0.288985-0.0135031.470428
0.3068732.869473-0.8498070.6511941.461751
Виділили найбільше та найменше значення випадкової величини X у вибірці:
XMIN=-4.356973, XMAX=5.687231.
Проводимо розбиття діапазону значень випадкової величини X на рівновіддалені.
Маємо 11 одиничних інтервалів (в нашому випадку це зручно для побудови гістограми). Тобто s=11. Оцінивши число ступенів свободи k як k≈ s, робимо висновок, що знижувати кількість значень випадкової величини, які попадають в кожний інтервал розбиття не можна (враховуємо це при корекції розбиття в наступному пункті).
Результати заносимо в Таблицю 4.1 (друга строчка).
Обчислюємо частоти появи значень випадкової величини X в кожному з інтервалів розбиття - експериментальні частоти. Результати заносимо в Таблицю 4.1 (третя строчка).
Проводимо корекцію розбиття для застосування методу Пірсона (проводимо укрупнення крайніх інтервалів шляхом їхнього об’єднання, доки не отримаємо мінімальну допустиму в методі Пірсона кількість значень випадкової величини, що попадають у формуємий інтервал; в нашому випадку ця кількість повинна бути не менша 10).
Результати заносимо в Таблицю 4.2 (друга строчка).
Проводимо обчислення оцінок основних характеристик випадкової величини: математичного чекання, дисперсії та середньоквадратичного відхилення.
Будуємо за даними Таблиці 4.1 гістограму (рис.4.1) - експериментальний варіант графіка функції щільності імовірності. Будуємо гістограму, бо маємо справу з попаданням безперервної випадкової величини X в один з інтервалів розбиття на рівновіддалені.
Рис.4.1 Гістограма експериментального графіку функції щільності імовірності.
Аналізуємо обчислені оцінки математичного чекання та отриману гістограму.
Безперервна випадкова величина X приймає від’ємні значення. Отже, їй залишається бути розподіленою за нормальним (гаусовським) законом розподілення.
„Правило 3-х сігм” приблизно виконується (більшість значень дійсно лежить в інтервалі (-4.165276; 5.252514)). Відхилення практичної гістограми від теоретичної допоможе оцінити характеристика асиметрії та ексцес.
Таким чином, висуваємо гіпотезу H0 - випадкова величина X розподілена за нормальним законом розподілення.
Для обчислення теоретичних частот попадання випадкової величини X в коректований інтервал (з Таблиці 4.2) можна використовувати дві методики. Ми будемо застосовувати другу як більш теоретично обґрунтовану та правильнішу, а також точнішу.
Перша методика проста, але обчислення на її основі носять приблизний, оціночний характер. Перейдемо в обчисленнях від загальної до центрованої нормальної величини. Теоретично наша випадкова величина вважається розподіленою за загальним нормальним законом. Його функція щільності імовірності має в нашому випадку вигляд:
.