ГОУ СПО «Кунгурское педагогическое училище»
Роль моделирования при работе над задачей в 5 классе
Курсовая работа по методике математики
специальность: 050201 математика
группа: М – 41 отделение: очное
преподаватель методики математики
Введение.......................................................................................................... 3
Теоретические основы моделирования.......................................................... 5
Понятие модели и моделирования.............................................................. 5
Моделирование в решении текстовых задач............................................... 10
Задачи на встречное движение двух тел................................................... 17
Задачи на движение двух тел в одном направлении................................ 17
Задачи на движение двух тел в противоположных направлениях.......... 18
Использование моделирования при работе над задачами на движение в 5 классе........................................................................................................................ 21
Заключение.................................................................................................... 39
Список литературы....................................................................................... 40
Приложение 1................................................................................................ 42
Решению текстовых задач отводится достаточно много времени в курсе математики. В ходе работы над задачами педагог раскрывает связи между данными и искомыми величинами, отношения, заданные в условии.
Учебная деятельность при решении задач складывается из умственных действий и осуществляется эффективно, если первоначально она происходит на основе внешних материальных действий с предметами, а затем превращается во внутренние процессы.
Таким образом, действия первоначально целенаправленно отрабатываются в плане внешних операций с вещами, а затем эти действия только представляются и проговариваются и, наконец, действия сворачиваются и уходят во внутренний план.
Как правило, в процессе анализа задачи учитель, а, следовательно, и ученики используют лишь различные виды краткой записи задачи или готовые схемы. Создание модели на глазах у детей или самими учащимися в процессе решения задачи считается очень важным.
«Рисунки, схемы, чертежи не только помогают учащимся в сознательном выявлении скрытых зависимостей между величинами, но и побуждают активно мыслить, искать наиболее рациональные пути решения задач, помогают не только усваивать знания, но и овладевать умением применять их. Эти условия необходимы для того, чтобы обучение носило развивающий характер.»[10, 7]
Графические изображения, используемые для постановки познавательных задач, наглядно представляя соотношения между данными и искомыми величинами, помогают ученикам схватить смысл проблемной ситуации, а затем и найти возможный путь решения.
Главное для каждого ученика на этом этапе – понять задачу, то есть уяснить, о чем эта задача, что в ней известно, что нужно узнать, как связаны между собой данные, каковы отношения между данными и искомыми параметрами. Для этого следует применять моделирование и учить этому детей.
Целью данной курсовой работы является разработка системы приемов моделирования.
Задачи:
1) познакомиться с понятиями «модель» и «моделирование»;
2) рассмотреть разные виды моделей, включить их в практическую работу с детьми;
3) изучить теоретические, методические источники по данному вопросу;
4) систематизировать приемы моделирования;
5) разработать конспекты уроков математики, провести и проанализировать их.
Объект исследования: учебная деятельность пятиклассников на уроках математики.
Предмет: процесс формирования у пятиклассников умений решать текстовые задачи, используя модели.
Контингент: учащиеся 5 классов лицея № 1 города Кунгура.
Гипотеза данной курсовой работы: использование моделирования влияет на формирование умения решать задачи.
Обучение математике требует развития у детей самостоятельности в решении текстовых задач. Каждый ученик должен уметь кратко записывать условие задачи, иллюстрируя ее с помощью рисунка, схемы, чертежа и других видов моделей, обосновывать каждый шаг в анализе задачи и ее решении, проверять правильность решения.
Таким образом, моделирование – это один из ведущих методов обучения решению задач и важное средство познания действительности.
Понятие модели и моделирования
В науке широко используется метод моделирования. Он заключается в том, что для исследования какого-либо объекта или явления выбирают или строят другой объект, в каком-то отношении, подобный исследуемому. Построенный или выбранный объект изучают и с его помощью решают исследование задачи, а затем результаты решения этих задач переносят на первоначальные явления или объект.
Под моделью (от лат. modulus – мера, образец, норма) понимают такой материальный или мысленно представляемый объект, который в процессе познания (изучения) замещает объект – оригинал, сохраняя некоторые важные для данного исследования типичные черты. Процесс построения и использования модели, называется моделированием.
Во всех науках модели выступают, как мощное орудие познания.
Например:
1. Люди издавна интересуются, как устроена наша Вселенная. Этот интерес не только познавательный, но и сугубо практический, так как люди хотели научиться предсказывать периодические явления, связанные с устройством Вселенной, такие, как: затмение солнца и луны, наступление времен года.
Для решения этих задач, ученые строили свои представления о Вселенной в виде схемы картины мира, в которой объекты планеты солнце и звезды, планеты, земля и луна изображались точками, движущимся по каким-то кривым – траекториям их движения. Таковы, например, схемы, построенные Птолемеем, в которых центральное место занимала наша Земля, или схема Коперника, в которой центральное место занимало Солнце.
С помощью этих схем ученые решали задачи предсказания отдельных астрономических явлений. Эти схемы или картины мира – суть модели Вселенной, а метод исследования Вселенной, нахождение законов и решения задач, связанных с помощью этих моделей, является методом моделирования.
2. Люди издавна интересуются, как устроены они сами, как функционирует человеческий организм. Но исследовать эти вопросы на живом человеческом организме очень трудно. Ибо такое изучение до появления особых приборов было связано с гибелью этого организма. Тогда ученые стали исследовать устройство человеческого организма на подобных его организму животных. Изучение организма животных, их функционирование помогло установить многие важнейшие закономерности функционирования человеческого организма.
В этих исследованиях организмы животных выступали в качестве модели человеческого организма, а при этом метод есть моделирования.
В математике широко используется метод моделирования при решении задач.
Математической моделью можно назвать специальное описание (часто приближенное) некоторой проблемы, ситуации, которое дает возможность в процессе ее анализа применять формально – логический аппарат математики. При математическом моделировании имеем дело с теоретической копией, которая в математической форме выражает основные закономерности, свойства изучаемого объекта.
В процессе математического моделирования выделяют три этапа:
1. Формализация – перевод предложенной задачи (ситуации) на язык математической теории (построение математической модели задачи).
2. Решение задачи в рамках математической теории (говорят: решение внутри модели).
3.Перевод результата математического решения задачи на тот язык, на котором была сформулирована исходная задача (интерпретация решения).
Чаще всего математическая модель представляет собой несколько упрощенную схему (описание) оригинала, а значит, обладает определенным уровнем погрешности.
Одна и та же модель может описывать различные процессы, объекты, поэтому результаты внутримодельного исследования одного явления зачастую могут быть перенесены на другое. В этом состоит одно из основных достоинств математического моделирования.
Математика не только создала разнообразные внутренние модели алгебры, геометрии, функции комплексного переменного, дифференциальных уравнений и т.д., но и помогла естествознанию построить математические модели механики, электродинамики, термодинамики, химической кинетики, микромира, пространства – времени и тяготения, вероятностей передачи сообщений, управления, логического вывода.
Созданием моделей математика часто опережала потребности естествознания и техники.
Реализация универсального математического метода познания есть основная цель и задача современной математики. Она включает, в первую очередь, построение новых, неведомых математических моделей, в частности в биологии, для познания жизни и деятельности мозга, микромира, новых, фантастических технологий и техники, а также познание экономических и социальных явлений также с помощью математических моделей различными математическими методами. [Приложение 1]
Любая математическая задача состоит из условия (утверждения), вопроса или требования. Причем, в задаче обычно не одно, а несколько элементарных условий. Они представляют собой количественные или качественные характеристики объектов задачи и отношения между ними.
Требований в заданиях тоже может быть несколько. Они могут быть сформулированы, как в вопросительной, так и в утвердительной форме. Условия и требования взаимосвязаны. Систему взаимосвязанных условий и требований называют высказывательной моделью (словесной).