Смекни!
smekni.com

Системы с постоянной четной частью (стр. 3 из 5)

Доказанная лемма, вопрос о периодичности решения

сводит к вычислению одного из значений нечетной части

. Иногда относительно
можно сказать больше, чем о самом решении
. Это позволяет в таких случаях делать различные заключения относительно существования периодических решений у систем вида (8). Дифференцируемые функции

удовлетворяют некоторой системе дифференциальных уравнений. Прежде, чем выписать эту систему, заметим:

(9)

так как

решение системы (8). Заменяя в тождестве (9)

на
и учитывая, что производная четной функции – функция нечетная, а производная нечетной функции – функция четная, получаем тождество –

(10)

Из тождеств (9) и (10) найдем производные:

Таким образом вектор-функция

(11)

удовлетворяет следующей системе дифференциальных уравнений порядка

:

(12)

При этом


Систему (12) будем называть системой чет-нечет, соответствующей системе (8). решение системы чет-нечет, как следует из условия а), однозначно определяется своими начальными условиями.

4. Построение примеров систем, четная часть общего решения которых постоянная

Пример

Найдем решение: будем использовать метод исключения, возьмем первое уравнение системы и выразим из него

:

теперь продифференцируем его

Мы можем приравнять левую часть полученного уравнения с левой частью второго уравнения исходной системы

Сделаем преобразования и приведем подобные

Таким образом:

Сделаем проверку, для этого в исходную систему подставим полученное решение:

Получили верные равенства. Значит было найдено правильное решение исходной системы.

Четная часть общего решения:


Пример

Найдем решение: будем использовать метод исключения, возьмем первое уравнение системы и выразим из него

:

теперь продифференцируем его

Мы можем приравнять левую часть полученного уравнения с левой частью второго уравнения исходной системы

Сделаем преобразования и приведем подобные

Таким образом:

Сделаем проверку:

Четная часть общего решения


Пример

Найдем решение: будем использовать метод исключения, возьмем первое уравнение системы и выразим из него

:

теперь продифференцируем его

Мы можем приравнять левую часть полученного уравнения с левой частью второго уравнения исходной системы

Получили два решения

и
.

1)

;

2)

;

Сделаем проверку для

:


Получили верные равенства. Значит было найдено правильное решение исходной системы.

Сделаем проверку для

:

Отсюда видно, что

не являются решением для исходной системы.

Таким образом:


Четная часть общего решения

Из данных примеров можем заметить, что решения систем записывается в виде:

где

и
– нечетные функции, а четная часть представлена константой.

;
;

(13)