10.
- нечетная, т.е.20. При
, значения функции представлены таблицей (табулированы) дляТак
Ответ:
Задан закон распределения дискретной случайной величины X (в первой строке указаны возможные значения величины X, во второй строке даны вероятности p этих значение).
Xi | 8 | 4 | 6 | 5 |
pi | 0,1 | 0,3 | 0,2 | 0,4 |
Найти:
1) найти математическое ожидание
,2) дисперсию
;3) среднее квадратичное отклонение
.Математическое ожидание (ожидаемое среднее значение случайной величины):
Дисперсия (мера рассеяния значений случайной величины Х от среднего значения а):
.Второй способ вычисления дисперсии:
где .Среднее квадратичное отклонение (характеристика рассеяния в единицах признака Х):
→Ответ:
Математическое ожидание
Дисперсия
Среднее квадратичное отклонение
Задание 7
Случайные отклонения размера детали от номинала распределены нормально. Математическое ожидание размера детали равно 200 мм, среднее квадратическое отклонение равно 0,25 мм. Стандартными считаются детали, размер которых заключен между 199,5 мм и 200,5 мм. Найти процент стандартных деталей.
Решение:
Таким образом, процент стандартных деталей составляет 95,45%
Ответ: Стандартных деталей 95,45%.
1. Горелова Г.В. Теория вероятностей и математическая статистика в примерах и задачах с применением MS Excel. /Под ред. Г.В. Гореловой, И.А. Кацко. - Ростов н/Д: Феникс, 2006. - 475 с.
2. Ковбаса С.И., Ивановский В.Б. Теория вероятностей и математическая статистика: Учебное пособие для экономистов. - СПб.: Альфа, 2001. - 192 с.
3. Кочетков Е.С., Смерчинская С.О., Соколов В.В. Теория вероятностей и математическая статистика: Учебник. - М.: ФОРУМ, 2008. - 200 с.
4. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник. - М.: ЮНИТИ-ДАНА, 2007. - 551 с.
5. Пехлецкий И.Д. Математика. / Под ред. И.Д. Пехлецкого. - М.: Издательский центр "Академия", 2003. - 421с.
6. Пугачев В.С. Теория вероятностей и математическая статистика: Учебное пособие. - М.: ФИЗМАТЛИТ, 2002. - 496 с.