Смекни!
smekni.com

Теория вероятностей (стр. 1 из 2)

Содержание

Задание 1

Задание 2

Задание 3

Задание 4

Задание 5

Задание 6

Список используемой литературы

Задание 1

Найти общее решение дифференциального уравнения первого порядка:

.

Решение:

Преобразуем уравнение и разделяя переменные, получим уравнение с разделенными переменными:

Интегрируем его и получаем общее решение данного уравнения

Ответ: Общее решение данного уравнения

Задание 2

Найти общее решение дифференциального уравнения первого порядка:

.

Решение:

Вводим замену

Так как одну из вспомогательных функций можно взять произвольно, то выберем в качестве

какой-нибудь частный интеграл уравнения
. Тогда для отыскания
получим уравнение
. Итак, имеем систему двух уравнений:

Далее

Проверка:

верное тождество. Ч. т.д.

Ответ:

Задание 3

Найти частное решение дифференциального уравнения второго порядка, удовлетворяющее указанным начальным условиям:

,

Решение:

Общее решение данного уравнения

ищется по схеме:

Находим общее решение

однородного уравнения. Составим характеристическое уравнение

и

Общее решение имеет вид:

,

где

Находим частное решение

. Правая часть уравнения имеет специальный вид. Ищем решение

, т.е.

Найдем производные первого и второго порядков этой функции.

-2
1
1

Т.о. частное решение

Общее решение

Используя данные начальных условий, вычислим коэффициенты

Получим систему двух уравнений:

Искомое частное решение:

Ответ:

Задание 4

В читальном зале имеется 6 учебников по теории вероятностей, из которых 3 в мягком переплете. Библиотекарь взял 2 учебника. Найти вероятность того, что оба учебника в мягком переплете.

Решение:

Пусть имеется множествоN элементов, из которых M элементов обладают некоторым признаком A. Извлекается случайным образом без возвращения n элементов. Вероятность события, что из m элементов обладают признаком А определяется по формуле:

(N=6, M=3, n=2, m=2)

Ответ:

Задание 5

Дана вероятность

появления события A в каждом из
независимых испытаний. Найти вероятность того, что в этих испытаниях событие A появится не менее
и не более
раз.

Решение:

Применим интегральную формулу Муавра-Лапласа

Где

и

Ф (x) - функция Лапласа

, обладает свойствами