3. Продолжительность работы прибора есть нормально распределенная с.в. с параметрами а=1000 ч. и
2=900 ч. Найти вероятность того, что продолжительность горения лампы составляет: а) более 1000 ч. б) менее 1000 ч. в) от 940 ч. до 1060 ч. Выписать плотность распределения данной с.в. и изобразить решение п. в) на графике плотности.4. Рост людей призывного возраста предполагается нормально распределенным со средним 170 см. и средним квадратическим отклонением 7 см. Определить процент лиц, имеющих рост а) более 170 см. б) менее 170 см. в) от 170 до 180 см. Решение п. в) изобразить схематично на графике плотности распределения.
5. Изменение индекса ценной бумаги на фондовой бирже может быть смоделировано как нормально распределенная случайная величина с параметрами а=1 и
2=0,01. Найти вероятность того, что на следующих торгах индекс ценной бумаги будет а) более 1 б) менее 1 в) от 0,98 до 1,02. Выписать функцию распределения и плотность распределения данной с.в.6. Средний процент выполнения плана предприятиями отрасли составляет 103%, среднее квадратическое отклонение 2%. Предполагая, что выполнение плана предприятиями подчиняется нормальному закону, определить процент предприятий, выполняющих план: а) более 103% б) менее 103% в) от 99% до 107%. Решение п. в) схематично изобразить на графике плотности распределения.
7. Диаметр деталей, изготовленных цехом, является с.в., имеющей нормальное распределение с математическим ожиданием равным а=5 см. и дисперсией 0,0004. В каких границах можно практически гарантировать диаметр деталей. Если данная с.в. выйдет за эти границы, то объясните ситуацию. Подсчитайте процент деталей, заключенных в пределах от 4,96 до 5,04.
8. На автомате изготовляют заклепки. Диаметр заклепок можно считать нормально распределенной с.в. со средним 3 мм и среднем квадратическим отклонением 0,1. Какие размеры диаметра головок заклепки можно гарантировать с вероятностью: а) 0,95; б) 0,9973.
9. Контролируемый размер детали представляет собой нормально распределенную с.в. с параметрами МХ=150 мм
(Х)=2 мм. а) Найти вероятность брака, если допустимые размеры должны быть 150±3 мм. б) Какую точность контролируемого размера можно гарантировать с вероятностью 0,97. в) За какие границы практически не выйдет контролируемый размер детали. Если он выйдет за эти границы, то постарайтесь объяснить ситуацию.10.Вес отдельной коробки конфет представляет собой нормально распределенную с.в. со средним 500 гр. и средним квадратическим отклонением 10 гр. а) Найти процент коробок, вес которых более 500 гр. б) Найти процент коробок, вес которых заключен в пределах 500±15 гр.
ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ
ЗАДАНИЕ 9. ПЕРВИЧНАЯ ОБРАБОТКА ДАННЫХ ПО НЕСГРУППИРОВАННЫМ НАБЛЮДЕНИЯМ
1-10. В следующих задачах дана выборка. Требуется:
а) Построить статистический ряд распределения частот и полигон частот;
б) Вариационный ряд;
в) Найти "хорошие" оценки математического ожидания и дисперсии;
г) Найти выборочные моду, медиану, коэффициент вариации, коэффициент асимметрии.
1. 0,1,1,3,1,2,2,0,1,0.
2. 1,5,1,2,1,3,2,3,1,2.
3. 10,8,10,11,9,10,8,9,10,10.
4. 50,45,45,55,45,50,40,45,50,45.
5. 20,22,20,24,20,22,20,20,25,22.
6. -1,1,0,1,1,2,-1,1,2,1.
7. 9,5,5,7,5,7,3,5,9,7.
8. 15,12,8,15,10,15,8,12,15,12.
9. 10,20,20,5,15,20,5,10,20,5.
10. 0,-1,2,-2,0,0,-1,2,-1,-2.
ЗАДАНИЕ 10. ДОВЕРИТЕЛЬНЫЕ ИНТЕРВАЛЫ
1. 25 рабочих контролировались в течении месяца по признаку - процент выполнения норм выработки за месяц. По выборочным данным были рассчитаны
=102,3% - средний процент выработки и дисперсия S2=16. Найти 95% доверительный интервал для генеральной средней, если известно, что признак имеет нормальное распределение.2. Используя данные задачи 1, определите, каким должен быть минимальный размер выборки для того, чтобы оценить среднюю месячную норму выработки с 95% надежностью и с максимальной ошибкой (точностью) не более 0,5(%).
3. Из большой партии электроламп случайным образом взята выборка из 100 ламп. Средняя продолжительность горения лампы, оцененная по выборке оказалась равной 1200 ч. Из предыдущих проверок известно, что данный признак имеет нормальное распределение с дисперсией s2=2500. Найти 97% доверительный интервал для генеральной средней.
4. Используя данные задачи 3, определите, каким должен быть минимальный размер выборки для того, чтобы оценить среднюю продолжительность горения лампы с 99% надежностью и с точностью не более 100 (ч).
5. Произведено 15 замеров контролируемого признака детали, изготовляемой станком-автоматом. По выборочным данным найдено S2=20 мкм. Найти точность работы станка с надежностью 0,95. Предполагается, что контролируемый признак имеет нормальное распределение.
6. По предварительному опросу населения большого города, в котором участвовало 900 жителей, за мероприятие Х, готовы проголосовать 400 человек из опрошенных жителей. Найти 90% доверительный интервал, в котором находится истинный процент готовых проголосовать за мероприятие Х.
7. Используя данные задачи 6, определите, каким должен быть минимальный размер выборки для того, чтобы оценить истинный процент "за" с 95% надежностью и с точностью не более 2%.
8. Недельные доходы фирмы подчинены нормальному закону распределения. По 25-еженедельным наблюдениям за доходами фирмы найдено S2=1200. Найдите 95% доверительный интервал для среднего квадратического отклонения недельных доходов.
9. Средний привес 16 поросят, которым давали в пищу добавку А, составил 30 кг, а S2=1,5. Считая, что данный признак имеет нормальное распределение, найдите 90% доверительный интервал для генеральной средней.
10.Среди 400 деталей, изготовленных станком-автоматом, 20 оказалось нестандартных. Найдите доверительный интервал, покрывающий с надежностью 0,98 неизвестную вероятность "брака".
ЗАДАНИЕ 11. ПРОВЕРКА ГИПОТЕЗ. F, T - КРИТЕРИИ
1-5. Для сравнения организации работы на двух однотипных
предприятиях, были взяты выборочные данные объемами n1 и n2 соответственно по признаку - объемы выпущенной продукции в у.е. Оценки дисперсии
и даны ниже. Можно ли считать, что предприятия работают одинаково точно. Уровень значимости выбрать самостоятельно.1. n1=10, n2=15;
2. n1=16, n2=9;
3. n1=12, n2=17;
4. n1=8, n2=17;
5. n1=11, n2=9;
6-10. Для сравнения производительности работы двух однотипных отделов торговли, были взяты две соответствующие выборки объемами n1 и n2 соответственно, по которым подсчитаны выборочные характеристики:
Проверьте гипотезу о том, что производительность отделов одинакова. Уровень значимости выбрать самостоятельно.6. n1=15, n2=20;
7. n1=20, n2=16;
8. n1=12, n2=8;
9. n1=9, n2=14;
10. n1=8, n2=20;
ЗАДАНИЕ 12.Критерий Пирсона
1-3. Ниже приведены данные о фактических объемах сбыта (в у.е.) в пяти районах. Согласуются ли эти результаты с предположением о том, что сбыт продукции в этих районах одинаков. Уровень значимости выбрать самостоятельно.
1. | Район | 1 | 2 | 3 | 4 | 5 |
Объем сбыта | 75 | 90 | 85 | 70 | 80 |
2. | Район | 1 | 2 | 3 | 4 | 5 |
Объем сбыта | 85 | 120 | 140 | 70 | 85 |
3. | Район | 1 | 2 | 3 | 4 | 5 |
Объем сбыта | 50 | 65 | 70 | 80 | 35 |
4-10. В следующих задачах для приведенных сгруппированных данных проверить гипотезу о том, что они получены из нормальной генеральной совокупности. Уровень значимости выбрать самостоятельно.