Смекни!
smekni.com

Теория вероятностей и математическая статистика (стр. 4 из 8)


4. Границы интервала 0-6 6-12 12-18 18-24 24-30 30-36 36-42
Частота 2 9 19 35 24 13 6
5. Граница интервала 0-4 4-8 8-12 12-16 16-20 20-24
Частота 7 16 55 22 4 2
6. Граница интервала 10-14 14-18 18-22 22-26 26-30 30-34
Частота 10 31 65 25 8 3
7. Граница интервала 1-5 5-9 9-13 13-17 17-21 21-25 25-29
Частота 3 29 56 81 67 19 8
8. Граница интервала 14-16 16-18 18-20 20-22 22-24 24-26
Частота 12 20 78 45 10 3
9. Граница интервала 7-9 9-11 11-13 13-15 15-17 17-19 19-21
Частота 2 35 97 86 45 26 4
10. Граница интервала 30-32 32-34 34-36 36-38 38-40 40-42 42-44
Частота 19 43 101 95 40 13 3

ЗАДАНИЕ 13. ИсслЕДОВАНИЕ ЗАВИСИМОСТЕЙ

В следующих задачах следует построить уравнение регрессии вида

Сделать вывод о возможности использования линию регрессии в дальнейших прогнозах.

1. Данные о выпуске продукции (Y) и энерговооруженности (X) на 6 предприятиях.

Xi 2 3 5 6 6 7
Yi 2,5 5,5 10 10 11,5 13,5

2. Данные об удельной величине спроса товаров (Y) и среднедушевого дохода (Х).

Xi 1 2 3 4 6 6
Yi 3,5 6,1 7,5 7,8 8,2 8,1

3. Данные об объеме валового продукта (Y) и затратами на капитальные вложения (Х) по 6 предприятиям.

Xi 1 1 2 4 6 8
Yi 4,5 5,1 10,3 18,1 19,2 19,8

4. Данные об объеме выпуска продукции (Y) и ее себестоимости.

Xi 2 2 3 4 5 6
Yi 8,5 9,1 11,2 12,8 15,1 17,3

5. Данные о долговечности элемента (Y) и величине эксплуатационного напряжения (Х).

Xi 6 7 7 8 9 9
Yi 40,1 45,4 46,2 53,2 59,5 60,2

6. Данные об урожайности (Y) и количестве весенних осадках (Х).

Xi 1 2 2 3 4 5
Yi 0,8 3,5 4,2 7,1 9,8 13,1

7. Данные об урожайности (Y) и механовооруженности (Х)

Xi 1 1 2 2 3 5
Yi 4,2 3,9 4,8 5,1 6,2 7,7

8. Данные о зависимости стоимости сооружения (Y) и срока ее эксплуатации (Х).

Xi 1 2 3 3 4 6
Yi 0,7 4,2 7,3 7,1 10,3 15,6

9. Данные об изменении массы просят (Y) и возраста (Х).

Xi 4 5 7 7 8 10
Yi 12,6 14,2 16,3 15,9 17,4 18,8

10. Данные о производительности труда (Y) и фондовооруженности (Х).

Xi 2 4 6 6 7 8
Yi 0,8 5,2 8,7 9,2 11 13,2

IV. РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ

Пример_1. Студент знает 15 вопросов из 25. Наудачу ему задается вопрос. Найти вероятность того, что он его знает.

Решение: Мы находимся в классической схеме. Действительно, если представить эксперимент

в виде урновой схемы - в урне 25 пронумерованных шаров из которой достается один шар- то ясно, что все исходы равновозможные и их конечное число. Далее A={студент знает предложенный вопрос}, m=15- число исходов благоприятствующих А, n=25- общее число исходов. Тогда

.

Пример 2. Из колоды в 36 карт, достается одна. Найти вероятность того, что она "красная".

Решение: Обозначим А={наудачу вынутая карта- "красная"}; m=18- число исходов благоприятствующих А, т.к. в колоде из 36 карт, 18 "красных" карт; n=36- общее число исходов. Тогда по классическому определению вероятности

.

Пример 3.Стрелок произвел 100 выстрелов по мишени, причем поразил мишень в 45 случаях. Найти вероятность того, что стрелок поразит мишень.

Решение: Подсчитаем относительною частоту события А={стрелок поразит мишень при одном выстреле}.


.

Таким образом искомая вероятность Р(А)=0,45.

Пример 4. Вероятность того, что событие А произойдет в опыте равна 0,75; вероятность того, что событие В произойдет в опыте- 0,4. Вероятность того, что оба события произойдут в опыте равна 0,25. Найти вероятность того, что хотя бы одно событие произойдет в опыте.

Решение: Обозначим А={событие А произошло в опыте}, В={событие В произошло в опыте}

Тогда А×В={события А и В произошли в опыте одновременно}.

Р(А)=0,75; Р(В)=0,4; Р(А×В)=0,25.

Используя теорему о сумме двух совместных событий получим

Р(А+В)=Р(А)+Р(В)-Р(А×В)=0,75+0,4-0,25=0,9.

Пример 5. Деталь проходит три операции обработки. Вероятность появления брака во время первой операции равна 0,02, второй- 0,01, третьей- 0,03. Найти вероятность: а) выхода стандартной детали, считая появление брака во время отдельных операций независимыми событиями; б) выхода бракованной детали.

Решение: а) введем события А={на выходе появилась стандартная деталь}, Аi={i-я операция обработки прошла без брака}, i=1,2,3. Тогда А=А1×А2×А3. По условию задачи Р(А1)=0,98; Р(А2)=0,99; Р(А3)=0,97.Используя теорему умножения для независимых событий, получаем.

Р(А)=Р(А1×А2×А3)=Р(А1)×Р(А2)×Р(А3)=0,98×0,99×0,97=0,9411.

б)

={на выходе появилась бракованная деталь}.Тогда

Пример_6. Партия деталей содержит 70% деталей первого завода и 30% деталей второго завода. Вероятность того, что деталь с первого завода проработает без отказа более 1000 часов (надежность) равна 0,95 , а для деталей со второго завода эта вероятность равна 0,9.

а) Найти вероятность того, что случайно взятая из партии деталь проработает без отказа более 1000 часов.

б) Деталь прошла испытание и проработала безотказно 1000 часов. Найти вероятность того, что она с первого завода.

Решение: Введем события А={деталь проработает без отказа более 1000 часов}.Hi={взятая деталь с завода i} , i=1,2 по условию задачи P(H1)=0,7 ; P(H2)=0,3 ; P(A/H1)=0,95 ; P(A/H2)=0,9.

По формуле полной вероятности

P(A)= P(H1)×P(A/H1)+ P(H2)×P(A/H2)=0,7×0,95+0,3×0,9=0,935.

Таким образом, партия деталей (большое количество) будет содержать где-то 93,5% деталей с заданной надежностью. б) Сохраним обозначения п. а). по формуле Бейеса

.

Пример 7. Найти числовые характеристики с.в. Х , построить функцию распределения если:

Х -4 0 8
Р 0,2 р 0,6

Решение: р=1-(0,2+0,6)=0,2. График ф.р.

МХ=-4×0,2+0×0,2+8×0,6=4, DX=MX2-(MX)2=(-4)2×0,2+02×0,2+82×0,6-(4)2=25,6.

Среднее квадратическое отклонение

,

коэффициент вариации

.

Мода(Х)=8, т.к. 8 имеет наибольшую вероятность, равную 0,6. Коэффициент асимметрии

.

Пример 8. Вероятность того, что в данный день торговая база уложится в норму расходов на транспорт, равна 0,8. Какова вероятность того, что за три рабочих дня база уложится в норму 2 раза. Найти числовые характеристики с.в. Х- число дней, когда база укладывается в норму транспортных расходов в течение трех рассматриваемых дней.

Решение: Можно считать, что мы находимся в схеме Бернулли, а следовательно с.в. Х имеет биномиальное распределение. По условию задачи n=3 , p=0,8.

Тогда

Основные числовые характеристики с.в. Х равны: а) математическое ожидание MX= n×p=3×0,8=2,4; б) дисперсия DX= n×p×q=3×0,8×0,2=0,48; q=1-p=0,2,