Таблица теоретических вероятностей:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
P*(x) | 0,00674 | 0,034 | 0,084 | 0,14 | 0,175 | 0,175 | 0,146 | 0,104 | 0,065 | 0,036 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
0,018 | 0,00824 | 0,00343 | 0,00132 | 4,7*10^(-4) | 1,57*10^(-4) | 4,92*10^(-5) | 1,46*10^(-5) | 4*10^(-6) | 1,05*10^(-6) | 2,64*10^(-7) |
F(X)=P(X<x), значит таблица теоретических значений функции распределения выглядит так:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
F*(x) | 0,00674 | 0,04 | 0,125 | 0,265 | 0,44 | 0,616 | 0,762 | 0,867 | 0,932 | 0,968 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
0,986 | 0,995 | 0,998 | 0,999 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Находим максимальный модуль разности между F(x) и F*(x), она равна
D=│F(6)–F*(6)│=│0,7167–0,762│=0,0453.
Найдем λ=D*√n=0,0453*√300=0,78462.
Вероятность P(λ)=1–∑k=-∞∞(-1)ke-2∙k^(2)∙λ^(2) равна(при λ=0,78462 из табл)=0,544.
Вывод: Значение вероятности не малое, т.е.>критического значения 0.1, значит гипотезу можно считать правдоподобной.