2. Определение: Два алгебраических выражения называются тождественными, если они принимают равные численные значения при соответственно равных числовых значениях букв и С общей области допустимых значений.
Тождеством называется равенство двух тождественных выражений.
Для алгебраических дробей тождественность расширяется.
П. С. Александров, Калмагоров дают следующие определения. – Равенство между двумя рациональными выражениями будем называть тождественным, если оно справедливо при всех значениях входящих в него букв, кроме тех исключительных случаев, когда одна из сторон равенства (или он сразу) становятся бессмысленными.
Таким образом, в тождественных преобладаниях эта замена одного выражения другим тождественно равных. Смысл его сохраняется и для нового. Тождественные преобразования состоят в применение к данному выражению основных свойств к действию, необходимо обратить внимание на правильное оформление упражнений, на доказательство тождеств, запись может быть двоякой.
Если следует доказать,
1)
2)
т.е. преобразовываем одну часть пока не получим другую или преобразовываем обе части пока не получим одно и тоже выражение в обеих частях.
Основную нагрузку по формированию умений и навыков выполнение преобразований несет курс алгебры.
На начальном этапе используется не расчлененная система преобразований.
П-р: Решить уравнение
а) 7х-5х=2
б) 7х=2+5х
в) 6+ (2-4у) +5у=3(1-3у)
при а) упрощение при помощи применения тождества ( распределительным законом) т.е. (7-5)х=2
б) сводится к пункту а) по сред-вам равносильных преобразований путем переноса.
в) используется преобразование в первых двух случаев.
Принципиальное значение темы тождественное преобразование состоит в следующем:
Данное алгебраическое выражение преобразуется в более простое тождественное выражение.
Выполняя тождество ученики должны осознать, что эти преобразования не являются самоцелью, а служат для нахождения числовых значений выражений для решения уравнения, для изучения функции.
В начальном или 5 классе вводится понятие буквенного выражения. Выражения содержащие буквы называют буквенным выражением.
Для упрощения выражений используется распределительный закон умножения.
Тождественные выражения и их преобразования основываются на законах арифметических действий.
Н-р: 7*а*с*6=42ас
В 7 классе рассматриваются понятия одночлена, его стандартного вида, коэффициента одночлена, умножение одночленов, а также многочлен и его стандартный вид, сложения и вычитание многочленов, умножение многочлена на одночлен и приведение подобных членов.
При изучении этих тем особое внимание следует уделять оформлению записи в тетрадях.
Учащихся надо приучать записывать в порядке алфавита, это позволяет избежать ошибок, при приведении подобных слагаемых.
Н-р: Записи видо12у2х+3х2у+6ух2-3ху2=9ху2+9х2у=9(ху2+х2у)
При умножении многочлена на многочлен надо приучать учащихся строго соблюдать порядок умножения их членов. Н-р: каждый член первого многочлена последовательно умножать на каждый член другого многочлена, это на позволит пропустить некоторые члены многочлена или не повторить их дважды.
Тождества изучаемые в школе можно разделить на 2 класса; первый состоит из тождества сокращенного умножения, а второй обеими тождествами связывающие арифметические операции и основные элементарные функции.
Формулы сокращенного умножения рассматриваются в 7 классе, как частный случай умножения многочленов.
Рассматриваются формулы разность квадратов, квадрат суммы, квадрат разности, сумму и разность кубов.
Формулы куба разности и куба суммы двух выражений даются для учащихся в упражнениях.
К выводу формул умножения нужно привлекать самих учащихся.
Усвоению формул помогают такие предлагаемые упражнения, прочитать следующие выражения: а+с, а-с, (а+с)2, (а-с)2, ас, 2ас, и т.д.
Еще в процессе изучения темы умножения многочленов можно вывести формулу сокращенного умножения.
Так выполняя многократно умножения двух одинаковых многочленов, учащиеся замечают, какие члены получаются при умножении.
Постепенно можно отвлечься от подробной записи и сразу записать результат умножения, так можно поступать и с другими формулами.
Не следует торопить учащегося запоминать формулы, пусть они ещё раз умножат многочлены, при получении навыков тождественных преобразований учащийся можно выделить три основных этапа:
запоминание алгоритма и его применение.
Применение нового алгоритма к совокупности с ранее известными алгоритмами.
Решение широкого круга задач с использованием нового алгоритма.
Н-р: при изучении формулы разности квадратов рекомендуется выделять следующие этапы:
Применять его к упрощению выражение (с-3)(с+3), (5х+1)(5х-1) и т.д. Чтобы учащиеся поняли, что результат не зависит от порядка множителей и от порядка слагаемых в сумме.
Умение применять формулу (а-с)(а+с) в сочетании с другими тождественными преобразованиями, применением с использованием свойств степени с натуральными показателями.
П-р: (12с2-7а3)(7а3+12с2); (-11р4+9)(9+11р4)
Умение применять форму при решении уравнений, неравенств, и их систем при исследовании функции, задача на делимость и другие.
В этих этапах самым важным является первый этап, где учащимся раскрывается сущность нового алгоритма, создаются основы для его усвоения и правильного применения. Излишне поспешное беглое прохождение первого этапа является основной причиной грубых ошибок в преобразованиях допускаемые учащимися. К ним относятся, например, ошибки вида: 25*73=148
(а+2)2=а2+4
(х+1)2=х2+1
с целью предупреждения подобных ошибок необходимо время от времени предлагать учащимся называть определения свойств, на которые основано выполнение преобразования.
Н-р: если ученик записал (а4)2=а16, то надо не только вспомнить определение, но и сделать подробную запись.
(а4)2=а4а4=(а*а*а*а)(а*а*а*а)=а8
Иногда, чтобы убедить учащихся в ошибочной записи, необходимо использовать числовые подстановки.