Смекни!
smekni.com

Теория игр. Корпоративные игры (стр. 2 из 2)

Простейшая характеристическая функция появляется, когда в голосующем коллективе имеется некоторое “ядро", голосующее с соблюдением правила “вето", а голоса остальных участников оказываются несущественными.

Обозначим через uG характеристическую функцию бескоалиционной игры. Эта функция обладает следующими свойствами:

персональность

uG (Æ) = 0,т.е. коалиция, не содержащая ни одного игрока, ничего не выигрывает;

супераддитивность

uG (KÈL) ³uG (K) + uG (L), если K, LÌN, KÇL¹Æ,

т.е. общий выигрыш коалиции не меньше суммарного выигрыша всех участников коалиции;

дополнительность

uG (K) + u (N\K) = u (N)


т.е. для бескоалиционной игры с постоянной суммой сумма выигрышей коалиции и остальных игроков должна равняться общей сумме выигрышей всех игроков.

Распределение выигрышей (делёж) игроков должно удовлетворять следующим естественным условиям: если обозначить через xiвыигрыш i-го игрока, то, во-первых, должно удовлетворяться условие индивидуальной рациональности

xi³u (i), для iÎN

т.е. любой игрок должен получить выигрыш в коалиции не меньше, чем он получил бы, не участвуя в ней (в противном случае он не будет участвовать в коалиции); во-вторых, должно удовлетворяться условие коллективной рациональности

= u (N)

т.е. сумма выигрышей игроков должна соответствовать возможностям (если сумма выигрышей всех игроков меньше, чем u (N), то игрокам незачем вступать в коалицию; если же потребовать, чтобы сумма выигрышей была больше, чем u (N), то это значит, что игроки должны делить между собой сумму большую, чем у них есть).

Таким образом, вектор x = (x1,..., xn), удовлетворяющий условиям индивидуальной и коллективной рациональности, называется дележём в условиях характеристической функции u.

Система {N, u}, состоящая из множества игроков, характеристической функции над этим множеством и множеством дележей, удовлетворяющих соотношениям (2) и (3) в условиях характеристической функции, называется классической кооперативной игрой.

Кооперативная игра с множеством игроков N и характеристической функцией u называется стратегически эквивалентной игрой с тем же множеством игроков и характеристической функцией u1, если найдутся такие к> 0 и произвольные вещественные Ci (iÎN), что для любой коалиции К ÌN имеет место равенство:

u1 (K) = ku (K) +

Смысл определения стратегической эквивалентности кооперативных игр (с. э. к. и) состоит в том что характеристические функции с. э. к. и. отличаются только масштабом измерения выигрышей k и начальным капиталом Ci. Стратегическая эквивалентность кооперативных игр с характеристическими функциями u и u1 обозначается так u~u1. Часто вместо стратегической эквивалентности кооперативных игр говорят о стратегической эквивалентности их характеристических функций.

Справедливы следующие свойства для стратегических эквивалентных игр:

1. Рефлексивность, т.е. каждая характеристическая функция эквивалентна себе u~u.

2. Симметрия, т.е. если u~u1, то u1~u.

3. Транзитивность, т.е. если u~u1 и u1~u2, то u~u2.

Одними из наиболее интересных способов решения коалиционных игр являются решения с применением аксиом Шелли.

3. Решение кооперативной игры при помощи вектора шепли

Аксиомы Шепли:

1. Аксиома эффективности. Если S- любой носитель игры с характеристической функцией u, то

= u (S)

Иными словами, “справедливость требует", что при разделении общего выигрыша носителя игры ничего не выделять на долю посторонних, не принадлежащих этому носителю, равно как и ничего не взимать с них.

2. Аксиома симметрии. Для любой перестановки p и iÎN должно выполняться

(pu) = ji (u), т.е. игроки, одинаково входящие в игру, должны “по справедливости” получать одинаковые выигрыши.

3. Аксиома агрегации. Если есть две игры с характеристическими функциями u¢ и u¢¢, то

ji (u¢ + u¢¢) = ji (u¢) + ji (u¢¢),

т.е. ради “справедливости" необходимо считать, что при участии игроков в двух играх их выигрыши в отдельных играх должны складываться.

Определение. Вектором цен (вектором Шепли) игры с характеристической функцией u называется n-мерный вектор

j (u) = (j1 (u), j2 (u),..., jn (u)),

удовлетворяющий аксиомам Шепли.

Существование вектора Шепли вытекает из следующей теоремы

Теорема. Существует единственная функция j, определённая для всех игр и удовлетворяющая аксиомам Шепли.

Определение. Характеристическая функция wS (T), определённая для любой коалиции S, называется простейшей, если

wS (T) =

Содержательно простейшая характеристическая функция описывает такое положение дел, при котором множество игроков S выигрывает единицу тогда и только тогда, когда оно содержит некоторую основную минимальную выигрывающую коалицию S.

Вектор Шепли содержательно можно интерпретировать следующим образом: предельная величина, которую вносит i-й игрок в коалицию T, выражается как u (T) -u (T \{i}) и считается выигрышем i-го игрока; gi (T) - это вероятность того, что i-й игрок вступит в коалицию T \{i}; ji (u) - средний выигрыш i-го игрока в такой схеме интерпретации. В том случае, когда u - простейшая,

Следовательно

,

где суммирование по T распространяется на все такие выигрывающие коалиции T, что коалиция T \{i}не является выигрывающей.

Пример. Рассматривается корпорация из четырёх акционеров, имеющих акции соответственно в следующих размерах

a1 = 10, a2 = 20, a3 = 30, a4 = 40.

Любое решение утверждается акционерами, имеющими в сумме большинство акций. Это решение считается выигрышем, равным 1. Поэтому данная ситуация может рассматриваться как простая игра четырёх игроков, в которой выигрывающими коалициями являются следующие:

{2; 4}, {3; 4},

{1; 2; 3}, {1; 2; 4}, {2; 3; 4}, {1; 3; 4},

{1; 2; 3; 4}.

Найдём вектор Шепли для этой игры.

При нахождении j1 необходимо учитывать, что имеется только одна коалиция T= {1; 2; 3}, которая выигрывает, а коалиция T \{1} = {2; 3} не выигрывает. В коалиции T имеется t = 3 игрока, поэтому

.

Далее, определяем все выигрывающие коалиции, но не выигрывающие без 2-го игрока: {2; 4}, {1; 2; 3}, {2; 3; 4}. Поэтому

.

Аналогично получаем, что

,
.

В результате получаем, что вектор Шепли равен

. При этом, если считать, что вес голоса акционера пропорционален количеству имеющихся у него акций, то получим следующий вектор голосования
, который, очевидно, отличается от вектора Шепли.

Анализ игры показывает, что компоненты 2-го и 3-го игроков равны, хотя третий игрок имеет больше акций. Это получается вследствие того, что возможности образования коалиций у 2-го и 3-го игрока одинаковые. Для 1-го и 4-го игрока ситуация естественная, отвечающая силе их капитала.

Заключение

Теория игр - наука, изучающая поведение многих участников, когда достигаемые каждым результаты зависят от действий остальных.

"Есть в современной математике одна область, она носит безобидное название теории игр, но ей, несомненно, суждено сыграть очень важную роль в человековедении самого ближайшего будущего, - говорил Джон фон Нейман, один из основоположников кибернетики. - Она занимается вопросами оптимального поведения людей при наличии противодействующего противника. Для ученого противник - это природа со всеми ее явлениями; экспериментатор борется со средой; математик - с загадками математического мира; инженер - с сопротивлением материалов".

Кооперативная теория игр, разделигр теории,в котором игры рассматриваются без учёта стратегических возможностей игроков (тем самымкооперативная теория игризучает некоторый класс моделей общих игр). В частности, вкооперативной теории игрвходит исследование нестратегических (кооперативных) игр, лишённых с самого начала стратегического аспекта. В кооперативной игре задаются возможности и предпочтения различных групп игроков (коалиций) и из них выводятся оптимальные (устойчивые, справедливые) для игроков ситуации, в том числе распределения между ними суммарных выигрышей: устанавливаются сами принципы оптимальности, доказывается их реализуемость в различных классах игр и находятся конкретные реализации. В терминах кооперативных игр поддаются описанию многие экономические и социологические явления.

Список использованной литературы

1. Большая советская энциклопедия, 1978 г.

2. Теория игр - статья Миркина Б.Г. на портале "Экономика. Социология. Менеджмент".

3. Дж. фон Нейман, О. Моргенштерн. Теория игр и экономическое поведение.