Теорема 4. Пусть даны две функции f:Х®У и g:У®Z. Тогда если композиция
инъективна, то f также инъективна, а если композиция сюръективна, то g также сюръективна.Доказательство. В обоих случаях применим метод доказательства с помощью контрапозиции. В первом случае высказывание контрапозиции будет следующим: если f – неинъективная, то и композиция
– неинъективная. Предположим, что f – неинъективная, тогда существуют х¢, х¢¢ÎХ такие, что х¢¹х¢¢, но f(x¢) = f(x¢¢).Следовательно, (
)(х¢) = (g°f)(х¢¢), поэтому композиция функций также не инъективна.Во втором случае высказывание контрапозиции будет таким: если g несюръективна, то композиция
несюръективна. Предположим, что g несюръективна. Тогда множество значений этой функции g(У) является собственным подмножеством множества Z. Так как, по теореме 2, ( )(Х) Íg(Y), то ( )(Х) есть также собственное подмножество множества Z, поэтому композиция не является сюръективной функцией.