Смекни!
smekni.com

Методы подобия и моделирования с привлечением физических уравнений (стр. 1 из 3)

Министерство образования и науки Украини

Херсонский национальний технический университет

Кафедра ОПЛПБО

Реферат

Тема:

Методы подобия и моделирования с привлечением физических уравнений

Выполнил:

Студент гр.3М Кандалинцев В.В.

Проверил:

преподаватель Вильшун И.А.

Херсон 2009

Введение

В том случае, когда физическое явление изучено настолько, что представляется возможным дать его математическую формулировку, можно произвести масштабные преобразования имеющихся уравнений (с граничными и начальными условиями) и найти соответствующие критерии подобия. Существенным при этом является тот факт, что для получения критериев подобия не обязательно иметь решение составленных уравнений, достаточно располагать исходными уравнениями в дифференциальной, интегральной или конечной форме, присоединив к ним начальные и граничные условия. Метод анализа уравнений, следовательно, предполагает знание значительного объема информации, относящейся к изучаемому объекту.

Таким образом, различия между методами анализа размерностей величин и анализом уравнений определяются лишь разницей в степени необходимой полноты знаний о физических свойствах, процессов. В первом случае аппарат анализа размерностей применяется к формулам размерности физических величин, во втором случае — к аналитическим зависимостям между величинами.

В данной главе при получении условий моделирования с помощью физических уравнений делается предположение о геометрическом подобии модели и натуры. Это предположение сближает метод анализа уравнений с методом анализа размерностей величин и при определенных условиях приводит к результатам, совпадающим с классической теорией подобия.


§ 1. Подобие стационарных и нестационарных физических полей

Напомним, что стационарным полем физической величины Qj называется не изменяющаяся с течением времени совокупность значений этой величины во всех точках изучаемого пространства или объема.

Если известен вид уравнения, описывающего некоторый физический процесс, например F (QltQ2, Qit Qn) = 0 (1.16),

разрешая его относительно искомой функции, получим уравнение поля физической величины Qy.

В общем случае определяющие параметры в правой части уравнения (3.1) — заданные переменные величины, зависящие от координат: Qt= Qx(х, у, г), Qn = Qn (х, у, г). Следовательно, величина Qj в конечном счете также представляет собой функцию пространственных координат х, у, г:

Из уравнения (3.2) очевидно, что в силу произвольности функций Ф и ¥ входящие в него параметры Qj (/ = 1, 2, п) могут иметь различные размерности.

Пусть в двух геометрически подобных системах 1 и 2 с характерными размерами 1Хи /2 поля сходственных переменных (Q7)j и (Qj)2заданы уравнениями


в которых (QJi, (Q2)x, (Qn)x и (Qx)29(Q2)2, (Qn)2— сходственные (одноименные) физические параметры.

Если величины (Qj)i и (Qj)2распределены каждая в своей системе так, что в любой паре сходственных точек при

всегда имеют место соотношения

то соответствующие им поля скалярных физических величин называются подобными стационарными полями [101].

В случае, если рассматривается подобие полей векторных или тензорных физических переменных, в соотношениях (3.5) под (Qt)i и (Qi)a следует понимать компоненты векторов или тензоров.


Равенства (3.7) свидетельствуют, что в сходственных точках подобных стационарных полей безразмерные координаты и безразмерные физические переменные соответственно равны.

Ввиду того, что для перехода от поля физической величины (Qj)i к полю сходственной величины (Q7)a необходимо задать два независимых между собой масштаба — геометрический /0 и физический (Qj)o, можно говорить об аффинности геометрических образов (то есть графиков, эпюр, рельефов функций) физических полей для механически подобных объектов. Таким образом, с формальной точки зрения геометрические отображения подобных стационарных физических полей являются аффинными объектами, совмещение которых может быть осуществлено путем неравномерной деформации [100].

Простым примером, иллюстрирующим аффинность физических полей, могут служить эпюры нормальных и касательных напряжений в геометрически подобных балках.

Действительно, для консольной балки постоянного прямоугольного сечения, нагруженной сосредоточенной силой Р на конце, уравнения одномерных полей нормальных и касательных напряжений (для фиксированного сечения х = 0) в критериальной форме имеют вид [84]


Здесь принято (b/l)= 1/10, (h/l) = 1/5, где 6, А, / — размеры поперечного сечения и длина консоли; г — текущая координата, совпадающая с вертикалью в плоскости изгиба балки.

Вычисляя отношения максимальных значений а и т к высотам сечений для каждой из геометрически подобных балок 1 и 2, с помощью формул (3.8) найдем

То есть эпюры нормальных и касательных напряжений для образцов 1и 2 можно совместить между собой только путем неравномерной деформации в ортогональных направлениях а — г или v — г (рис. 3.1). Это свидетельствует об аффинности геометрических образов полей напряжений аит (3.8) при механическом подобии балок.

Нестационарным полем физической величины Qj называется совокупность мгновенных значений этой величины во всех точках данного пространства или объема.

Для нестационарных задач поле переменной Qj в отличие от (3.2) имеет вид

Аналогично тому, как это было сделано для стационарного поля, можно показать, что в сходственных точках подобных нестационарных полей в сходственные моменты времени безразмерные координаты и безразмерные физические переменные соответственно равны.

Кроме того, геометрические отображения подобных нестационарных полей в сходственные моменты времени обладают свойствами аффинности и могут быть совмещены между собой путем неравномерной деформации.

Заканчивая рассмотрение подобия стационарных и нестационарных физических полей, остановимся на свойствах инвариантности безразмерных уравнений, описывающих подобные физические поля.

Рассмотрим с этой целью уравнения полей двух механически подобных систем 1 и 2 (3.3). Согласно П-теоремы анализа размерностей, каждое из этих уравнений всегда может быть преобразовано к безразмерной (критериальной) форме, содержащей в качестве новых переменных безразмерные комбинации основных параметров

Здесь k = п — г; г — ранг матрицы размерностей переменных Qj.

Так как объекты 1 и 2 механически подобны, для безразмерных комбинаций П/, представляющих собой критерии подобия, имеют место равенства

Согласно условиям подобия (3.11) левые части уравнений (3.10) равны между собой. Кроме того, попарно равны также сходственные аргументы функций Qг и Q2.

Поскольку равенство левых частей уравнений (ЗЛО) должно выполняться при любых значениях определяющих критериев подобия, функции вх и в2 — тождественно одинаковы:


Таким образом, безразмерные критериальные) уравнения физических полей тождественно совпадают между собой, если соответствующие им объекты 1 и 2 удовлетворяют условиям механического подобия.

§ 2. Масштабные преобразования алгебраических и дифференциальных уравнений. Теоремы подобия

До сих пор вопросы подобия явлений обсуждались нами с позиций анализа размерностей физических величин. Перейдем к рассмотрению условий подобия, исходя из анализа физических уравнений процесса.

Будем считать известными уравнение или систему дифференциальных уравнений с соответствующими граничными и начальными условиями, которые полностью определяют данный механический процесс или явление.

Предположим вначале, что решение рассматриваемой системы дифференциальных уравнений известно и может быть "представлено в форме одного или нескольких конечных соотношений между переменными:

Здесь величины Qj (/ = 1, 2, п) включают независимые переменные, искомую функцию и остальные основные параметры некоторого решения «s».

Любое другое решение этой же задачи, подобное решению (3.12), определяется как результат подобного преобразования переменных Qj по формулам


Так как подобные явления, соответствующие решениям (3.14) и (3.12), принадлежат к одному классу, преобразование переменных по формулам (3.13) не должно изменять вида функции F. Следовательно, выяснение условий подобия данных явлений может быть сведено к исследованию условий инвариантности уравнений (3.12), (3.14) по отношению к преобразованиям подобия (3.13).