Выражение для зеркально отраженного вектора позволяет представить нормальный вектор в виде линейной функции от задаваемого вектора z:
Число
Выбрав
Такое нормирование не нарушает коллинеарности отраженного и единичного векторов:
Рассмотрим пример воздействия ортогонального преобразования на матрицу
Приведенная методика получения унитарных (и ортогональных в частности) матриц используется во многих стандартных алгоритмах в качестве инструмента частичного преобразования исходных матриц к двух или трех диагональным, для которых в дальнейшем применяются рекуррентные формулы получения решения уравнений, называемые в литературе методом прогонки для систем с ленточными матрицами.
2.Итерационные методы с минимизацией невязки
2.1Ускорение сходимости итерационных методов
Точные методы получения решений, использующие рассмотренные эквивалентные преобразования полностью заполненной матрицы, требуют выполнения числа операций, пропорционального кубу размерности системы, и свободной памяти для хранения исходных и промежуточных значений – пропорциональной квадрату размера матрицы. Поэтому для сверх больших систем (число неизвестных больше нескольких сотен) ориентируются в основном на применение приближенных, итерационных методов.
Привлекательность тех или иных итерационных методов определяется скоростью сходимости итерационного процесса. Теоретически доказано, что итерационный процесс Гаусса-Зейделя сходится к решению при любом начальном значении искомого значения вектора решений, однако количество итерационных циклов может во много раз превышать число неизвестных (размерность матрицы). Это вызвало к жизни множество модификаций алгоритмов, обладающих большей скоростью сходимости.
Процедуры ускорения связаны с построением очередного вектора по одному или нескольким его значениям на предыдущих итерационных циклах. Фактически речь идет о построении на каждом шаге итераций интерполирующей функции с векторным аргументом, по которой вычисляют очередной вектор для подстановки. Для вычисления вектора
Подстановка последнего в уравнение (
После подстановки очередного вектора функционал получит новое значение, которое будет зависеть от некоторого скаляра
Чтобы невязки на каждом шаге итераций становились меньше, желательно соответствующим образом выбирать
Из последнего равенства для (k+1) – й итерации величина шага
Если единичные векторы направления последовательно выбирать равными координатным, т.е.
Выбирая направление изменения очередного вектора в сторону локального убывания, т.е. в сторону, противоположную вектору градиента функционала, получается метод быстрого спуска. В этом случае
2.2Метод сопряженных направлений
Среди методов, связанных с выбором направления существуют методы, в которых к векторам направлений предъявляются требования их взаимной сопряженности
Классическим набором сопряженных векторов являются собственные векторы матрицы (
В то же время примером ортогональных направлений являются направления вектора градиента и нормали в заданной точке некоторой гиперповерхности. Такая поверхность выше была представлена функционалом в виде скалярного произведения вектора невязки и вектора x, которая и определяла направление спуска по направлению градиента. Если, используя такой же подход к вычислению
Выбрав в начале итераций
а векторы невязок будут ортогональными: