Реферат «Введение в численные методы»
Тема: «Методы предварительных эквивалентных преобразований и итерационные методы с минимизацией невязки для решения СЛАУ»
1.Методы предварительных эквивалентных преобразований
1.1Преобразование вращения
Следующий важный подход к решению алгебраических систем уравнений базируется на применении эквивалентных преобразований с помощью унитарных матриц, сводящем исходную матрицу к эквивалентной ей диагональной.
Смысл этого подхода состоит в том, чтобы последовательно, умножением слева и / или справа на специальные унитарные матрицы, превратить некоторые компоненты исходной матрицы в нуль.
Матрица S называется унитарной, если ее произведение со своей комплексно сопряженной равно единичной матрице. Это означает, что комплексно сопряженная матрица равна обратной матрице:
Известной унитарной матрицей является матрица вращения,которая применяется для поворота на заданный угол вектора, принадлежащего некоторой плоскости, вокруг начала координат. В двумерном случае вектор
Чтобы сохранить эквивалентность результирующей матрицы при умножении ее на матрицу вращения, необходимо исходную матрицу умножать справа на
Поворот вектора в многомерном пространстве на произвольный угол можно представить, как последовательность плоских вращений каждой проекции на некоторый угол. Если подобрать угол вращения так, чтобы в плоском повороте одну из проекций вектора совместить с координатной осью, то вторая проекция в этой плоскости становится равной нулю.
Частные повороты вектора в многомерном пространстве с помощью матрицы вращения можно выполнять, если ее расширить до матрицы размера
Индексы i, j обозначают матрицу вращения, поворачивающую вектор в плоскости
Теперь частное эквивалентное преобразование матрицы A вращением на угол
Условие превращения в нуль ij-тых элементов симметричной матрицы A можно получить методом неопределенных коэффициентов на двумерной матрице:
Угол поворота, при котором
Разделив на
Из двух решений для тангенса выбирается такое, чтобы
Для получения результирующей матрицы выполнять матричное умножение трех матриц совсем необязательно. Структура матриц вращения вызывает при умножениях изменение только тех элементов исходной матрицы, которые находятся на i-той и j-той строчках и на i-том и j-том столбцах. Изменения представляются суммами элементов, стоящих в строчках и столбцах, умноженных на синус или косинус угла
преобразования строк –
преобразование столбцов –
На пересечениях i-й строки и i-того столбца и j-й строки и j-того столбца располагаются соответственно вычисленные выше
Для приведения к диагональной матрице необходимо выполнить
1.2Ортогональные преобразования отражением
Следующей важной унитарной матрицей, с помощью которой в различных алгоритмах выполняются ортогональные преобразования, являются матрицы отражения. Использование этого инструмента позволяет, например, последовательными эквивалентными преобразова-ниями свести исходную матрицу к верхней треугольной (QR-алгоритмы), трех или двух диагональным и т.д.
Смысл этого подхода состоит в том, чтобы умножением матрицы A слева на специально подобранную унитарную матрицу
При выборе в качестве начального вектора
Весь вопрос состоит в том, как формировать унитарную матрицу с заданными свойствами из векторов
Из аналитической геометрии известно, что любые векторы, лежащие в плоскости, взаимно перпендикулярны с ее нормалью, т.е. их проекции на нормаль равны нулю. Последнее эквивалентно равенству нулю скалярных произведений.
Чтобы (k+1) – мерный векторный треугольник
Пусть вектор z не параллелен плоскости, заданной своей нормалью, тогда его проекции на эту плоскость и нормаль соответственно будут представлены векторами
Разрешив первое относительно
Проекцию вектора
Здесь M представляет унитарную матрицу, преобразующую произвольный вектор в зеркально отраженный. В том, что матрица унитарная, нетрудно убедиться, проверив ее произведение со своей комплексно сопряженной: